

 $\textcircled{\bullet}$

SOUTH EUROPEAN SEAS

Report on the Implementation of the DeCyDe-4-IRIS Method and Tools at the Eastern Mediterranean Stakeholder Workshop

Athens, Greece

24 October 2014

November 2013

Isotech Ltd Environmental Research and Consultancy

Funded by the European Commission – DG Environment

SOUTH EUROPEAN SEAS

Table of Contents

1. The aim of the IRIS- SES stakeholder workshops	3
2. The Eastern Mediterranean Workshop	4
2.1. The preparatory phase	4
2.1.1. Gathering data and information	4
2.1.2. Identifying stakeholders and key actors	4
2.1.2.1. The concept for stakeholders mapping in IRIS-SES	4
2.1.2.2. The role of local IRIS partners	5
2.1.2.3. Indicative list of key actor/ stakeholder categories for IRIS-SES	5
2.2. The development of the DeCyDe-4-IRIS Toolbox	7
2.2.1. The DeCyDe-4-IRIS scoreboards for each region	7
2.2.2. The source-pollutant matrix	8
2.2.3. The list of abatement measures	9
2.3. The DeCyDe-4-IRIS workshop	9
2.3.1. Structure and aims	9
2.3.2. Attendees	9
3. The DeCyDe-4-IRIS Eastern Mediterranean workshop outcomes	11
3.1. Outputs from the DeCyDe-4-IRIS Self-Assessment Tools	11
3.2. Outputs from the identification of monitoring gaps and needs	11
3.3. Outputs from the identification of collaboration opportunities	12
3.4. Outputs regarding proposed abatement measures	13
Appendix A – Schematic Representation of the DeCyDe-4-IRIS Workshops	15
Appendix B – The DeCyDe-4-IRIS Completed Factsheets for the Eastern Mediterranean	
Countries	16
Appendix C – The DeCyDe-4-IRIS Participatory self assessment method towards GES and	
MSFD integrated monitoring.	56

Appendix D – Proposed Abatement Measures to Improve the Environmental Status Related to	
Eutrophication (D5) and Contaminants (D8/D9)	62
Appendix E – List of Participants at the Eastern Mediterranean DeCyDe-4-IRIS Workshop	65

SOUTH EUROPEAN SEAS

IN THE

1. The aim of the IRIS- SES stakeholder workshops

Within project IRIS-SES 'Integrated Regional monitoring Implementation Strategy in the South European Seas', four regional stakeholder workshops are planned: one in the Western Mediterranean, one in the Central Mediterranean, one in the Eastern Mediterranean and one in the Black Sea. The aim of these workshops is to help make informed decisions about local and regional monitoring needs by establishing a two-way communication flow between the IRIS-SES project and the bodies responsible for MSFD monitoring.

SOUTH EUROPEAN SEAS

2. The Eastern Mediterranean Workshop

The first stakeholder workshop to be organized within IRIS-SES was the one for the Eastern Mediterranean, involving representatives from Cyprus, Greece and Turkey. The workshop was held in Athens, on 24 October, 2014.

There were three parts to the workshop: the preparatory phase, the development of the toolbox, and the workshop itself. Appendix A shows a schematic representation of each of these phases, whereas the rest of this chapter provides a more detailed description.

2.1. The preparatory phase

This phase was concerned with gathering (a) the relevant information and (b) identifying the most suitable stakeholders and key actors for participation in each workshop, through a dedicated stakeholder mapping exercise per country.

2.1.1. Gathering data and information

To gather the necessary information for the successful implementation of the workshop, Isotech developed factsheets regarding the monitoring of eutrophication (Descriptor 5) and contaminants (Descriptors 8 and 9). The factsheets (Appendix B) aimed to capture information regarding the parameters that are being measured for these Descriptors, the frequency of monitoring, the background and upper limits for each parameter as defined by national or European legislation, any scales used to assess Good Environmental Status (GES), indicative values for each parameter and the monitoring method used.

2.1.2. Identifying stakeholders and key actors

This part of the preparatory phase aim to identify the key stakeholders to be invited to the workshop. Using a stakeholder mapping approach, Isotech facilitated each partner in the identification of stakeholders and key actors in the Marine Strategy Framework Directive (MSFD) process.

2.1.2.1. The concept for stakeholders mapping in IRIS-SES

The aim of this mapping activity is to bring together and support active participation and commitment from the major groups of key actors and stakeholders in each country/ region, regarding the MFSD and the processes that are included in order to achieve GES.

Five major key actors and stakeholders groups are identified:

 $\textcircled{\bullet}$

SOUTH EUROPEAN SEAS

- The "producers" of pollution
- The decision makers for "solutions"
- The implementing, inspecting and monitoring actors and authorities
- Civil society
- Media

2.1.2.2. The role of local IRIS partners

Local IRIS-SES partners will identify the key persons from each category (a more analytical and supportive category list follows) in their country. It is important to carefully select the representatives from the involved key actor/ stakeholder categories, to ensure that they will provide real site-specific input and expertise, and to be committed or willing to incorporate the new IRIS methods in their work/ processes. These stakeholders/ key actors will form the National IRIS Key Actors Group, which is the "core" group to assist in the implementation of the actions of IRIS and will support IRIS's aim for *sustainability of achievements*, through a close cooperation with the IRIS partners.

2.1.2.3.	Indicative	list of key	actor/	^r stakeholder	categories	for	IRIS-SES
----------	------------	-------------	--------	--------------------------	------------	-----	-----------------

1	Government and/or	Local
	policy making	National
		Other
2	Inspectorates and monitoring bodies/ authorities	It is important to include representatives from the relevant bodies/ authorities responsible for inspecting the major sources of marine pollution. Their input is important.
3	Waste Water Management Councils/ Boards/ Authorities	
		Coastal tourism/ hotel industry

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

IN THE

SOUTH EUROPEAN SEAS

IRIS SES

		Sewage treatment industries
4	Coastal and inland	Farmers
	industry	Energy industry
		Shipbuilding/ ship repairing industry
		other
		Commercial fishing
		Shipping
		Off-shore industries
5	Marine industry	Nautical tourism/ marine related tourism activities
		Aquaculture
		Other
6	Civil Society	NGO / SCO
		Professional Bodies
		Other
		Newspaper/ radio/ TV
7	Media/ Awareness	Online

The factsheets and the stakeholder mapping documents, together with a description of the DeCyDe-4-IRIS methodology for the workshops (Appendix C), were shared with the IRIS-SES partners in the Eastern Mediterranean countries of Cyprus, Greece and Turkey, at least two months ahead of the workshop. The partners were asked to complete the information in the factsheets, for one region within their country that would act as a pilot region, either using their

SOUTH EUROPEAN SEAS

own knowledge or experience or by contacting the relevant authorities in their countries. Likewise, the partners were asked to identify those stakeholders that could be invited to participate to the workshop. Due to the limited number of stakeholders that could be invited, emphasis was placed on selecting stakeholders that were involved with the MSFD monitoring and/or with decision-making regarding the MSFD monitoring.

2.2. The development of the DeCyDe-4-IRIS Toolbox

In preparation of the meeting, Isotech developed the DeCyDe-4-IRIS Toolbox, a suite of tools that were necessary for the implementation of the workshop, and comprising of: (1) the scoreboards for each region, (2) DeCyDe-4-IRIS Self-Assessment Tool (3) the source-pollutant matrix and (4) a list of possible abatement measures per sector.

2.2.1. The DeCyDe-4-IRIS scoreboards for each region

Using the information that each country provided in the factsheets, specifically the background and upper limits and any existing scales for assessing GES, Isotech developed the DeCyDe-4-IRIS Self-Assessment Tool. This excel-based scoreboard uses the approach of scoring through ranges, to help countries or regions within countries visualize the current situation with regards to meeting the goals of good environmental status. The ranges for the scoring are identified by a group of experts, based on national, EU and International Standards.

Figure 1 shows an extract from the self-assessment tool developed for Cyprus. These specific tables relate to Descriptor D5, eutrophication, and were developed based on the information that the Cypriot competent authority (Department of Fisheries and Marine Research) provided in the factsheets. For both the Nutrients and Phytoplankton categories, defined by the group of experts, scales/ranges are used to determine GES. Scores were assigned to each of these ranges/scales in order to help assess and provide a number to the current situation. The last column, entitled 'Indicator Score', automatically calculates the average of all the parameters that describe each of the categories (e.g. for 'Nutrients', the Indicator Score is calculated as the average of the scores for 'Phosphates', 'Nitrates' and 'Ammonia').

Each of the developed DeCyDe-4-IRIS Self-Assessment Tools (one per country) contains three tabs: one for the assessment of eutrophication such as the one that appears in Figure 1, a similar

one for the assessment of contaminants, and one that summarizes the obtained scores and provides the total score for that particular country or region.

	D5 - EUTROPHI	CATION										
1	Nutrients	Units	Scoring Ranges Indic									
			>0.68	0.14-0.68	0.07-0.14	<0.07						
	1. Phosphates	μМ	1	4	7	10						
						10						
			>1.19	0.65-1.19	0.62-0.65	<0.62						
	2. Nitrates	2. Nitrates	μΜ	μΜ	μΜ	μМ	1	4	7	10	9.00	
						10						
			>2.2	1.05-2.2	0.55-1.05	<0.55						
	3. Ammonia	μМ	1	4	7	10						
					7							
								-				
2	Phytoplankton	Units		Scoring Ranges								
			>2.21	0.6-2.21	0.4-0.6	0.1-0.4	<0.1					
	1. Chlorophyll α	μg/I	1	3	5	7	10	7.00				
						7						

Figure 1 Extract from the DeCyDe-4-IRIS Self-Assessment Tool developed for Cyprus.

2.2.2. The source-pollutant matrix

As the name suggests, the source-pollutant matrix (Figure 2) is an excel-based matrix that, for each of the parameters that characterize Descriptors 5 and 8/9 identifies the main sources of pollution, based on literature and bibliographic references. The matrix is to be used alongside the completed self-assessment tool to assist decision-makers and stakeholders to identify the most likely pollution sources (main polluting sectors) for each of the parameters where the self-assessment tool demonstrated that there was room for improvement.

	Pollutant											
	PO ₄	NO ₃	NH_4	PAHs	PCBs	Pesticides	Cu	Zn	Cd	Pb	Hg	¹³⁷ Cs
Municipal Waste	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Industrial Waste	Х	Х	Х	Х	Х		Х	Х	Х	х	х	Х
Farming Incl. Aquaculture	х	х	х									
Agriculture	х	х	Х			х	Х					
Shipping	Х	Х	Х	Х			Х			х		

Figure 2 The DeCyDe-4-IRIS source-pollutant matrix.

SOUTH EUROPEAN SEAS

2.2.3. The list of abatement measures

Isotech's group of experts also developed a list of possible abatement measures for each of the main sectors that could result in the discharge of pollutants related to Descriptors 5, 8 and 9 in the marine environment. Mapping the sources of pollutants and identifying solutions/measures per source is very challenging. The DeCyDe-4-IRIS approach aims to assist decision makers to easily pick out those measures that could be implemented in their country or region, based on the previous identification of main pollutant sources (section 2.2.2). The developed Abatement Measures List appears in Appendix D.

2.3. The DeCyDe-4-IRIS workshop

2.3.1. Structure and aims

The Eastern Mediterranean DeCyDe-4-IRIS workshop took place at Hotel Philippos in Athens, on 24 October 2014.

The DeCyDe-4-IRIS workshops are structured on group work and have three distinct but interrelated stages, aiming to:

- Guide the partners through the Self Assessment process;
- Identify the gaps, problems and needs of their country/region with regards to eutrophication and contaminants monitoring
- Discuss on possibilities of joint monitoring
- Improve coordination among neighboring countries.
- Discuss possible abatement measures for the improvement of GES

2.3.2. Attendees

A total of seven invited stakeholders and decision-makers attended the workshop: two from Cyprus, two from Turkey and three from Greece, representing the national bodies responsible for the monitoring of the MSFD descriptors as well as the bodies responsible for decision-making regarding the MSFD. The workshop took place back-to-back with the ARCADIS EU-MED-MSFD Coordination and Alignment Meeting D (CAM D), therefore several of the stakeholders that had participated at the CAM D meeting, also stayed to observe the DeCyDe-4-IRIS

workshop. Additionally, the workshop was attended by several IRIS-SES partners. The full list of participants appears in Appendix E.

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

 $\textcircled{\bullet}$

SOUTH EUROPEAN SEAS

3. The DeCyDe-4-IRIS Eastern Mediterranean workshop outcomes

3.1. Outputs from the DeCyDe-4-IRIS Self-Assessment Tools

To begin with, the DeCyDe-4-IRIS Self-assessment tools for each country were completed in plenary, so that all the participants could become familiar with the process and experience the ease with which the assessment takes place. A few important issues to take into consideration were identified at this stage:

- 1. The DeCyDe-4-IRIS Self-Assessment Tool is only as robust as the information presented in the factsheets completed by each country, as its development is completely based on this information. Therefore, countries are required to ensure that all the data in the factsheets are accurate.
- 2. The Tool is site and case specific. Therefore, the information and data presented in the factsheets must relate to a specific site/location e.g. for Greece, it would make sense to have one factsheet for a specific area of the Aegean, or for the Ionion or the Thermaikos etc. This would ensure that the decision-makers would be able to identify at a glance sites/locations with specific problems. This would be difficult to assess if the factsheets contain information for the entire country.
- 3. It would be useful for the decisions makers if there was a certain type of 'warning' system, when particularly low scores are recorded for one parameter, which reveal danger, e.g. low mercury score, meaning high mercury concentration, which is highly dangerous to public health. This would ensure that decision makers are immediately alerted to the problem, and would avoid the 'masking' of the problem if all the other parameters that define a descriptor receive high scores.

3.2. Outputs from the identification of monitoring gaps and needs

Following the completion of the self-assessment tools, the stakeholders from each country were asked to identify the monitoring needs for their country and present them in plenary. Stakeholders were encouraged to use the DeCyDe-4-IRIS Self-assessment tools for their country, since they provided an overview of what is being measured and how.

The following monitoring requirements/gaps were identified:

SOUTH EUROPEAN SEAS

For Greece:

- The need to take into account the natural geology of an area, as well as other natural processes (e.g. volcanic activity etc.) when deciding on background values for contaminants in sediments.
- The need to increase the frequency of chlorophyll a measurements to at least once per month.

For Turkey:

• A gap in monitoring contaminants in biota was identified.

For Cyprus:

- There is a gap in monitoring of contaminants in large pelagic fish, as monitoring of contaminants in biota is only done for the species *Mullus barbatus* at the moment.
- There is a need to identify the source of macroalgal blooms. Their development remains a mystery especially since they appear in such oligotrophic conditions. A possible suggestion to address this gap is to carry out isotope studies with ¹⁵N tracers.

3.3. Outputs from the identification of collaboration opportunities

The next part of the workshop required participants from different countries to sit together and discuss possible collaboration opportunities regarding MSFD monitoring. The following collaboration opportunities between Cyprus, Greece and Turkey were identified:

1. The development of an algorithm and associated satellite imaging for chlorophyll and sea grass mapping e.g. *poseidonia oceanica* medows. This could be a cooperation opportunity between 3-4 countries. However, it was noted that at this stage this can be done on a research basis but cannot be applied to MSFD monitoring just yet, as it is a long-term procedure that would require pilot projects, presentations at conferences, validation etc. Some concerns regarding the cost-effectiveness of this method were also raised.

SOUTH EUROPEAN SEAS

2. The use of common infrastructures, e.g. gliders, network of buoys for Central and Eastern Mediterranean, argofloats, etc. could be promoted, as the cost would be shared between countries and therefore the data would also be shared.

IRIS SES

- 3. The participants stated that it was important to agree on common procedures among countries, rather than just on joint monitoring programs, as this would allow comparability among the results.
- 4. Although near-shore monitoring is well developed in most cases, offshore monitoring is mostly non-existent. Therefore, the participants suggested that it would be interesting to pursuit offshore joint monitoring opportunities, particularly for mature descriptors as it can be cost effective. As an initiative this can start from the Regional Sea Conventions and/or DG Environment.
- 5. Additionally, Descriptors with major gaps were identified as a good place to start cooperation, as collaborating countries can set up common monitoring programs, acquire common infrastructure and share resources.
- 6. The stakeholders identified a gap in the information of available inventories, therefore they suggested that it was important to have an inventory of the infrastructure that each country uses and that could be used for joint monitoring. One example given was to collate information on research vessels in the Eastern Mediterranean.

In addition to the identified joint monitoring opportunities, the workshop participants also noted that the different legal obligations among EU and non-EU members (neighbouring countries) pose a collaboration problem.

3.4. Outputs regarding proposed abatement measures

The last part of the workshop saw the participants of each country sitting back together and identifying the main pollution sources and most applicable abatement measures for their countries. This was done in a two step approach. In step one, the participants from each country identified the main sources of pollution via the source-pollutant matrix and in step 2 they reviewed the possible abatement measures for each identified source and selected those most applicable for their country.

The proposed abatement measures for Cyprus were:

SOUTH EUROPEAN SEAS

• Re-circulated systems to the 3 existing aquaculture hatcheries to minimize nutrient flow.

IRIS SES

- Promote organic agriculture to minimize nutrient entering the marine environment.
- Develop and promote good agricultural practices to minimize the use of fertilizers.

The proposed abatement measures for Turkey were:

- Avoid leaching of mining waste.
- Promote organic agriculture and decrease pesticide usage.
- Turn to renewable energy sources.

Finally, the proposed abatement measures for Greece were:

- Connect the many absorption pits (mainly in small villages) to the sewage system and to a wastewater treatment plant.
- Recreate buffer zones for wastewater.
- Separate industrial waste from municipal waste.
- Relocate aquaculture operations, which are now too close to the coast.
- Provide training for farmers and raise awareness to promote crop rotation and organic farming*.
- Avoid copper antifoulants on boats and prohibit the disposal of wastewater from very small boats.

*Note: Traditionally, crop rotation was a common practice in the Mediterranean. However, at EU level there are no incentives to promote crop rotation, but instead there are incentives to grow certain crops intensively.

Appendix A – Schematic Representation of the DeCyDe-4-IRIS Workshops

SOUTH EUROPEAN SEAS

Appendix B – The DeCyDe-4-IRIS Completed Factsheets for the Eastern Mediterranean Countries

ACTIVITY 3: SELF-ASSESSMENT TOOL FOR ASSESSING GES FOR EUTROPHICATION AND CONTAMINANTS

Country	CYPRUS
Region	EASTERN MEDITERRANEAN
Neighboring	
Regions	
Partner	DATA SUBMITTED BY DFMR

SOUTH EUROPEAN SEAS

FACTSHEET 1: Eutrophication - Nutrients

Descriptor	D5 Eutrophication							
Indicator	Nutrients							
Parameters	The parameters for nutrients include nitrogen and phosphorus compounds, ammonia and sediment organic matter. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).							
	Parameter	Background	Upper Limit	Unit	Monitoring			
		Level			Frequency			
	Phosphates		0,14	µmol/l	12			
	Nitrates		0,65	µmol/l	12			
	Nitrites			µmol/l	12			
	Ammonia		1,05	µmol/l	12			
Comments regarding	Please state whether there that stated above	are areas where t	the background lev	el is higher	or lower than			
background and upper limits								
Indicative values	For each of the above para country's monitoring plan	ameters please giv	ve indicative values	s, as measur	ed by your			
	Parameter	Indicative valu	e					
	Phosphates	0,02						
	Nitrates	0,39						
	Nitrites	0,08						
	Ammonia	0,68						

Method	Please state the method used for measuring for each parameter and determining the								
	above values								
	Parameter	Method us	Method used						
	Phosphates	Spectropho	otometrically – Se	gmented Flow An	alysis (SFA)				
	Nitrates	Spectropho	otometrically - Se	gmented Flow Ana	alysis (SFA)				
	Nitrites	Spectropho	otometrically – Se	gmented Flow Ana	alysis (SFA)				
	Ammonia	Spectropho	otometrically – Se	gmented Flow Ana	alysis (SFA)				
Scales to assess GES	For each parameter, p towards GES, if any.	lease state the p	redefined scale that	at is used to assess	progress				
	Parameter	Oligotrophic	L.mesotrophic	H.mesotrophic	Eutrophic				
	Phosphates	< 0.07	0.07-0.14	0.14-0.68	>0.68				
	Nitrates	<0.62	0.62-0.65	0.65-1.19	>1.19				
	Ammonium	<0.55	0.55-1.05	1.05-2.2	>2.2				
	PAGOU K., Eutrophi Greece. PAGOU K., SIOKOU their ratios in relation Mediterranean coasta Sustainability: The ca IGNATIADES, L., V evaluating oligotroph Poll. Bull., 24: 238-24	Ammonium<0.55							

SOUTH EUROPEAN SEAS

FACTSHEET 2: Eutrophication - Phytoplankton

Descriptor	D5 Eutrophication								
Indicator	Phytoplankton								
Parameters	The parameters for phytoplankton include chlorophyll a, primary production, macroalgae and phytoplankton.In the table below, please add all the parameters that are being monitored AND for which there are available monitoring data. Add the most characteristic parameters for our region first.For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).ParameterBackgroundUpper LimitUnitMonitoring								
		Level			Frequncy				
	Chlorophyll-a		0,1	μg/l	12				
regarding background and upper limits	Please state whether there are areas where the background level is higher or lower than that stated above								
Indicative	For each of the above par	ameters please gi	ve indicative val	ues, as meas	ured by your				
values	Parameter	Indicative valu	e						
	Chlorophyll o								
Method	Please state the method u	sed for measuring	for each parame	eter and deter	rmining the				
u	above values		, ist each purality						

	Parameter		Method used					
	Chlorophyll-a		EPA Method 445.0 Fluo	orometric d	etermination			
Scales to assess GES	For each parameter, please state the predefined scale that is used to assess progress towards GES, if any.							
	Eutroj	phication Se	cale Chlorophyll-α (µg l ⁻¹)	Ecologica	l Status (WF	D)		
			Oligotrophic	< 0.1	High			
			Lower Mesotrophic-1	0.1-0.4	Good			
			Lower Mesotrophic-2	0.4-0.6	Moderate			
			Upper mesotrophic	0.6-2.21	Poor			
			Eutrophic	>2.21	Bad			
	Harmonization al., 2002) and	n of eutroph ecological s	ication scale (according to status in WFD, according	o KARYDI to SIMBO	S, 1999 and URA et al., 2	PAGOU et 2005.		

SOUTH EUROPEAN SEAS

FACTSHEET 3: Eutrophication - Other

Descriptor	D5 Eutrophication				
Indicator	Other				
Parameters	The parameters for other characteristics include Secchi depth and dissolved oxygen concentration. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year)				
	Parameter	Background	Upper	Unit	Monitoring
		Level	Limit		Frequency
	Dissolved oxygen			mg/l	12
Comments regarding	Please state whether there that stated above	e are areas where	the backgrour	nd level is hi	gher or lower than
background and upper limits					
Indicative values	For each of the above parameters please give indicative values, as measured by your country's monitoring plan				
	Parameter	Indicative valu	e		
	Dissolved oxygen	6,92			
Method	Please state the method us	sed for measuring	for each para	ameter and d	etermining the

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

IN THE

SOUTH EUROPEAN SEAS

	above values	
	Parameter	Method used
	Dissolved oxygen	OxyGuard Handy Gamma with salinity compensation.
Scales to assess GES	For each parameter, plea towards GES, if any.	se state the predefined scale that is used to assess progress

SOUTH EUROPEAN SEAS

FACTSHEET 4: Contaminants – In Water

Descriptor	D8/D9 Contaminants				
Indicator	In water				
Parameters	The parameters for contaminants in water include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency				
	Parameter	Background	Upper	Unit	Monitoring
		Level	Limit		Frequency
	Hg		0,05	µg/l	12
	Cd		0,2	µg/l	12
	Pb		7,2	µg/l	12
	Ni		20	µg/l	12
Comments regarding	Please state whether there that stated above	e are areas where th	le background l	evel is higher	or lower than
background and upper limits					

Indicative	For each of the above parameters please give indicative values, as measured by your country's monitoring plan				
values	Parameter	Indicative value			
	Нg	0.3 (LOO 0.1)			
	Cd	0.07 (LOO 2009-2012 0.1, LOO 2013 1.0)			
	Ph	0.46 (LOO 2009-2012 0.2 LOO 2013 2.0)			
	Ni	0.5 (LOO 2009-2012 0.2, LOO 2013 4.0)			
Method	Please state the method used for measuring for each parameter and determining the above values				
	Parameter	Method used			
	Hg	AAS Cold Vapor			
	Cd	ICP/MS			
	Pb	ICP/MS			
	Ni	ICP/MS			
Scales to	For each parameter, pleas	se state the predefined scale that is used to assess progress			
assess GES	towards GES, if any.				
	Directive 2013/39/EC				

SOUTH EUROPEAN SEAS

FACTSHEET 5: Contaminants – In Sediment

Descriptor	D8/D9 Contaminants				
Indicator	In sediment				
Parameters	The parameters for contaminants in sediments include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).				
		Level	Limit	Cint	Frequency
Comments regarding background and upper limits	Please state whether there are areas where the background level is higher or lower than that stated above				
Indicative	For each of the above par	ameters please giv	ve indicative v	alues, as me	asured by your
values	country's monitoring plan				
	rarameter	Indicative value	e		
	Diagon state the method w		for oach rome	matan and da	tomo in in a tha
Wiethod	Please state the method used for measuring for each parameter and determining the above values			termining the	
	Parameter	Method used			
Scales to assess GES	For each parameter, pleas towards GES, if any.	e state the predefi	ned scale that	is used to as	ssess progress

SOUTH EUROPEAN SEAS

FACTSHEET 5: Contaminants – In Biota

Descriptor	D8/D9 Contaminants				
Indicator	In biota				
Parameters	The parameters for contaminants in biota include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).				
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency
	Hg		20	µg/kg	1
	Cd			µg/kg	1
	Pb			µg/kg	1
	2,2',3,4,4',5,5'- heptachlorobiphenyl (CB180)			µg/kg	1
	2,2',3,4,4',5'- hexachlorobiphenyl (CB138)			µg/kg	1
	2,2',4,4',5,5'- hexachlorobiphenyl (CB153)			µg/kg	1
	2,2',4,5,5'- pentachlorobiphenyl (CB101)			µg/kg	1
	2,2',5,5'- tetrachlorobiphenyl (CB52)			µg/kg	1

2,4,4'-trichlorobiphenyl (CB28)		µg/kg	1
Aldrin		µg/kg	1
alpha-HCH		µg/kg	1
Arochlor 1254		µg/kg	1
Arochlor 1260		µg/kg	1
beta-HCH		µg/kg	1
DDD, o, p'		µg/kg	1
DDD, p, p'		µg/kg	1
DDE, o, p'		µg/kg	1
DDE, p, p'		µg/kg	1
DDT, o,p'		µg/kg	1
DDT, p,p'		µg/kg	1
Dieldrin		µg/kg	1
Endrin		µg/kg	1
gamma-HCH (Lindane)		µg/kg	1
Heptachlor	0,0067	µg/kg	1
Heptachlorohonzono	10	µg/kg	1
(HCB)	10	µg∕кg	1
Hexachlorobutadiene (HCBD)	55	µg/kg	1
Lindane (gamma-HCH)		µg/kg	1

Comments	Please state whether there are areas where the background level is higher or lower than		
regarding	that stated above		
background			
and upper			
limits			
Indicative	For each of the above par	ameters please give indicative values as measured by your	
values	country's monitoring plan	l	
	Parameter	Indicative value	
	Hg	91	
	6		
	Cd	Below limit of quantification	
	Dh	Delaw limit of quantification	
	ΓU	Below mint of quantification	
	2,2',3,4,4',5,5'-	Below limit of quantification	
	heptachlorobiphenyl		
	(CB180)		
	2,2',3,4,4',5'-	Below limit of quantification	
	hexachlorobiphenyl		
	(CB138)		
	2 2' 4 4' 5 5'-	Below limit of quantification	
	hexachlorobinhenvl	below mill of quantification	
	(CB153)		
	2,2',4,5,5'-	Below limit of quantification	
	pentachlorobiphenyl		
	(CB101)		
	2,2',5,5'-	Below limit of quantification	
	tetrachlorobiphenyl		
	(CB32)		
	2,4,4'-trichlorobiphenvl	Below limit of quantification	
	(CB28)	л.	
	· · ·		
	Aldrin	Below limit of quantification	
	alpha-HCH	Below limit of quantification	
	1	· · · · · · · · · · · · · · · · · · ·	
	Arochlor 1254	Below limit of quantification	

	Arochlor 1260	Below limit of quantification
	beta-HCH	Below limit of quantification
	DDD, o, p'	Below limit of quantification
	DDD, p, p'	Below limit of quantification
	DDE, o, p'	Below limit of quantification
	DDE, p, p'	Below limit of quantification – 50
	DDT, o,p'	Below limit of quantification
	DDT, p,p'	Below limit of quantification
	Dieldrin	Below limit of quantification
	Endrin	Below limit of quantification
	gamma-HCH (Lindane)	Below limit of quantification
	Heptachlor	Below limit of quantification
	Heptachloroepoxide	Below limit of quantification
	Hexachlorobenzene (HCB)	Below limit of quantification
	Hexachlorobutadiene (HCBD)	Below limit of quantification
	Lindane (gamma-HCH)	Below limit of quantification
Method	Please state the method us	sed for measuring for each parameter and determining the
	Parameter	Method used
	Hg	AOAC-Official Method 983.20.Mercury (Hg) in fish. Hg is
	8	determined by CVAAS (Cold vapor Atomic Absorption
		Spectroscopy).
	Cd	AOAC-Official Method 999.10 Lead (Pb), Cadmium (Cd)
		etc in Foods. Cd is determined by GFAAS (Graphite furnace

		Atomic Absorption Spectroscopy).
Pb		AOAC-Official Method 999.10 Lead (Pb), Cadmium (Cd)
		etc in Foods. Pb is determined by GFAAS (Graphite furnace
		Atomic Absorption Spectroscopy).
2,2',3,4,4',5,5'	-	Samples are extracted in hexane using soxtec technique and
heptachlorobip (CB180)	henyl	determined by GC-MS/MS.
2,2',3,4,4',5'-		Samples are extracted in hexane using soxtec technique and
hexachlorobipl (CB138)	henyl	determined by GC-MS/MS.
2,2',4,4',5,5'-		Samples are extracted in hexane using soxtec technique and
hexachlorobipl	nenyl	determined by GC-MS/MS.
(CB153)		
2,2',4,5,5'-		Samples are extracted in hexane using soxtec technique and
pentachlorobip	henyl	determined by GC-MS/MS.
(CB101)		
2,2',5,5'-		Samples are extracted in hexane using soxtec technique and
tetrachlorobiph (CB52)	nenyl	determined by GC-MS/MS.
2,4,4'-trichloro	biphenyl	Samples are extracted in hexane using soxtec technique and
(CB28)		determined by GC-MS/MS.
Aldrin		Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
alpha-HCH		Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
Arochlor 1254		Samples are extracted in hexane using soxtec technique and determined by GC-MS/MS.
Arochlor 1260		Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
beta-HCH		Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
DDD, o, p'		Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

IN THE

SOUTH EUROPEAN SEAS

	DDD n n'	Samples are extracted in hexane using soxtec technique and
	, r, r	determined by GC-MS/MS.
	DDE, o, p'	Samples are extracted in hexane using soxtec technique and
	, , , r	determined by GC-MS/MS.
	DDE, p, p'	Samples are extracted in hexane using soxtec technique and
	,1,1	determined by GC-MS/MS.
	DDT, o,p'	Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
	DDT, p,p'	Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
	Dieldrin	Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
	Endrin	Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
	gamma-HCH (Lindane)	Samples are extracted in hexane using soxtec technique and
		determined by GC-MS/MS.
	Heptachlor	Samples are extracted in hexane using soxtec technique and
	*	determined by GC-MS/MS.
	Heptachloroepoxide	Samples are extracted in hexane using soxtec technique and
_		determined by GC-MS/MS.
	Hexachlorobenzene	Samples are extracted in hexane using soxtec technique and
	(HCB)	determined by GC-MS/MS.
	Hexachlorobutadiene	Samples are extracted in hexane using soxtec technique and
	(HCBD)	determined by GC-MS/MS
	(11022)	
	Lindane (gamma-HCH)	Samples are extracted in hexane using soxtec technique and
	,	determined by GC-MS/MS.
Scales to	For each parameter, please	e state the predefined scale that is used to assess progress
assess GES	towards GES, if any.	
	Directive 2013/39/EC	

SOUTH EUROPEAN SEAS

ACTIVITY 3: SELF-ASSESSMENT TOOL FOR ASSESSING GES FOR EUTROPHICATION AND CONTAMINANTS

Country	Greece
Region	
Neighboring	
Regions	
Partner	UoA

SOUTH EUROPEAN SEAS

FACTSHEET 1: Eutrophication - Nutrients

Descriptor	D5 Eutrophication						
Indicator	Nutrients						
Parameters	 The parameters for nutrients include nitrogen and phosphorus compounds, ammonia and sediment organic matter. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year). 						
	ParameterBackground LevelUpper Limit ParameterUnitMonitoring Frequency						
	Nitrate	<0.62	<1.00	µg-atN L⁻¹	3 times per year		
Ammonium<0.55							
	Phosphate	<0.07	<0.5	µg-atP L ⁻¹	3 times per year		
Comments regarding	Please state whether ther than that stated above	e are areas where	the background	level is highe	r or lower		

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

background	At present, the background level is exceeded in some areas as are Thermaikos and						
and upper	Amvrakikos Gulf. Elefsi	s bay. Maliakos gulf. The upper limits are those proposed in					
limits	implementation of the Water Framework Directive according to Karvdis et al (1999).						
mints	For GES thresholds according to IAs were used a combination of criteria set by						
		Nume 1 (2001)					
	Karyois et al (1999) and	wasmund (2001)					
Indicative	For each of the above parameters please give indicative values, as measured by your						
values	country's monitoring pla	n					
	Parameter Indicative value						
	Nitrate	0.634±0.025 μmol/L (mean for 2012-2013)					
	Ammonium	0.385±0.402 µmol/L (mean for 2012-2013)					
	Phosphate	0.04 µmol/L (mean for 2012-2013)					
Method	Please state the method u	used for measuring for each parameter and determining the					
	above values						
		F					
	Parameter	Method used					
	Nitrate	Stickland & Parsons 1977					
	A	K					
	Ammonium	Korolell, 1970					
	Dhaanhata	Murphy & Biloy 1062					
	Thosphate						
Scales to	For each parameter, plea	se state the predefined scale that is used to assess progress					
assess GES	towards GES, if any.						
	Karydis et al (1999) and	Wasmund (2001)					

SOUTH EUROPEAN SEAS

IRIS•SES

FACTSHEET 2: Eutrophication - Phytoplankton

Descriptor	D5 Eutrophication					
Indicator	Phytoplankton					
Parameters	The parameters for eutrophication include chlorophyll a, primary production, microalgae and phytoplankton.					
	In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first.					
	For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).					
	ParameterBackground LevelUpper Limit FrequncyUnitMonitoring Frequncy					
	Chlorophyll a	0.1	0.4	μg L ⁻¹	Three times per year	
	phytoplankton	6*10 ³	1.5*10 ⁵	Cells L ⁻¹	Three times per year	
Comments regarding background	Please state whether there that stated above	e are areas where t	he background l	evel is higher o	or lower than	
and upper limits	At present, the background level is exceeded at some areas as are Thermaikos, Amvrakikos Gulf, Elefsis bay. The upper limits are those proposed in implementation of the Water Framework Directive (Karydis 1999, Simboura et al 2005, MEDGIG) which were used to define GES in the MSFD. Background and indicative values are referred exclusively to euphotic layer of coastal waters					
Indicative values	For each of the above par country's monitoring plan	ameters please giv	e indicative value	ues, as measure	ed by your	

	Parameter	Indicative value			
	Chlorophyll a	0.049±0.01 to 2.572±0.09 μ g L ⁻¹			
Method	Please state the method us above values	sed for measuring for each parameter and determining the			
	Parameter	Method used			
	Chlorophyll a	Holm-Hansen et al. (1965)			
	Phytoplankton	Utermohl 1958			
Scales to assess GES	For each parameter, please state the predefined scale that is used to assess progress towards GES, if any.				
	Simboura et al 2005, MEDGIG (for chl-a)				
	Karydis et al 1999, national assessment method for phytoplankton				

SOUTH EUROPEAN SEAS

FACTSHEET 3: Eutrophication - Other

Descriptor	D5 Eutrophication							
Indicator	Other	Other						
Parameters	The parameters for eutrophication include secchi depth and dissolved oxygen concentration. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for							
	For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).							
	ParameterBackground LevelUpper LimitUnitMonitoring Frequency							
	Secchi depth	-	*	m	Three-four months			
	Oxygen concentration	-	*	Percentage of saturation	Three-four months			
Comments regarding background	Please state whether there are areas where the background level is higher or lower than that stated above							
and upper limits	*There not is an upper lir	nit established for	these paramet	ters or a back	ground level			
Indicative	For each of the above par	ameters please giv	ve indicative v	alues, as meas	sured by your			

l	R	l	S	•	S	E	S
			-		-	_	-

values	country's monitoring plan				
	Parameter	Indicative value			
	Secchi depth	2.5 – 22.5 m			
	DO	Usually >4.25 mL/L			
Method	Please state the method us	sed for measuring for each parameter and determining the			
	above values				
	Parameter	Method used			
	Secchi depth	In situ measurement with Secchi disc			
	Oxygen concentration	Winkler			
Scales to	For each parameter, pleas	e state the predefined scale that is used to assess progress			
assess GLS	towards GES, If any.				
	Non-applicable				

SOUTH EUROPEAN SEAS

FACTSHEET 4: Contaminants – In Water

Descriptor	D8/D9 Contaminants						
Indicator	In water						
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data, placing the most characteristic parameters first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year)						
	Parameter	Parameter Background Upper Unit Monitoring					
				μσ/l	2 times a		
	Cd	0.05	0.5	P(B) 1	year		
	Hg 0.05 0.5 μg/l Cu 0.5 10 μg/l Pb 0.5 10 μg/l						
	Zn	1	100	µg/l			
	Total PAHs	0.1	5	µg/l			
	Total PCBs	0	0.1/100	µg/lng/l			
	Pesticides	0	0.1/100	µg/l ng/l			
	¹³⁷ Cs	1.5	20	Bq/m ³	One-off		
Comments	Please state whether there	are areas where the	e background l	evel is higher	or lower than		
regarding	that stated above						
background	We regard background le	vel values to be that	t of the open se	ea.			
limits	Coastal areas present high	er background leve	el values due to	o pressures.	aagurad		
iiiiitis	values.		I ecoloxicologi	ical tests and n	lleasureu		
	Regarding upper limits, h	igher values are me	asured in Ther	maikos Gulf, F	Kavala gulf,		
	Pagasitikos Gulf, Saronik	os Gulf and Milos i	sland.		-		
Indicative	For each of the above para	ameters please give	indicative value	ues, as measur	ed by your		
values	country's monitoring plan	1 <u>5 5 5</u>			5.5		
	Parameter	Range / Indicativ	ve value				
	Cd	0.001-0.8 / 0.02 μ	g/l				

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

IN THE

SOUTH EUROPEAN SEAS

	Hg	0.01-1,.1 / 0.01 µg/l		
	Cu	0.06-4.6 / 0.8 μg/l		
	Pb	0.02-4.1 / 0.5 μg/l		
	Zn	0.75-70 / 2.5 μg/l		
	Total PAHs	0.01-2.77µg/l / 0.68 µg/l		
	Total PCBs	0.1-2 ng/l / 1.35 ng/l		
	Pesticides	0,1-7,7 ng/l / 1,16 ng/l		
	Cs 137	2-16,5 bq/m3 / 6,8 bq/m3		
Method	Please state the method us above values	sed for measuring for each parameter and determining the		
	Parameter	Method used		
	Cd, Cu, Pb, Zn	Resin pre-concentration, and measured by GFAAS or FAAS		
	Hg	Gold trap amalgamation and atomic fluorescence spectrometry (CVAFS) detection.		
	PAHs	Liquid-liquid or Solid phase extraction Measurement by GC-MS or HPLC		
	137Cs	Gamma – spectrometry system, HpGe Detector.		
Scales to assess GES	For each parameter, pleas towards GES, if any.	e state the predefined scale that is used to assess progress		

SOUTH EUROPEAN SEAS

FACTSHEET 5: Contaminants – In Sediment

Descriptor	D8/D9 Contaminants							
Indicator	In sediment							
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year)							
	Parameter	Background	Upper	Unit	Monitoring			
	Level Limit Frequency Once a Once a							
	Cd	0.1	5.0	mg/kg	year/one-off			
	Cr 20 300 mg/kg Cu 10 100 mg/kg Pb 10 120 mg/kg							
	Нg	0.01	0.70	mg/kg				
	Ni	20	60	mg/kg				
	Zn	40	380	mg/kg				
	137Cs							
	Total PAHs	0.2/200	15/15000	mg/kg/ µg/kg				
	Total PCBs	0	0.02/20	μg/g dw/ μg/kg dw				
Comments	Please state whether there	are areas where t	he background	l level is high	er or lower than			
regarding	that stated above		- 4 - 6 41					
and upper	We regard background le	vel values to be th	at of the open	sea.				
limits	Upper limits are set taking	g into consideratio	on ecotoxicolog	gical tests and	d measured			
	values.							
	Regarding upper limits, h and Antikyra.	igher values are m	neasured in Pat	raikos Gulf,	North Evoikos			
	For each of the above par	ameters please giv	ve indicative va	alues, as mea	sured by your			
Indicative	country's monitoring plan	1						

	Parameter	Range / Indicative value				
	Cd	0.01-1.3 / 0,2 mg/kg				
	РЬ	4.2- 194 / 51 mg/kg				
	Cu	0.5- 60.6 / 34,2 mg/kg				
	Hg	0.01- 1.3/ 0.22 mg/kg				
	Zn	8.5 – 193 / 105 mg/kg				
	Cr	7,3-482/ 137 mg/kg				
	Ni	1,6-278/ 91,2 mg/kg				
	137 Cs	18,6-52,5 bq/kg / 40,8				
	Total PAHs	0.8-10.300 μg/kg / 226 μg/kg				
	Total PCBs	0.2-75,58 μg/kg dw / 4.82 μg/kg dw				
Method	Please state the method us	sed for measuring for each parameter and determining the				
	Parameter	Method used				
	Cu, Zn, Cd, Pb	Digestion with concentrated acids (HF, HNO ₃), measured using FAAS, or GFAAS.				
	Cu, Zn, Pb	X-ray Fluorescence				
	Нg	Microwave digestion, Measurement by CV-AAS				
	PAHs	Soxhlet extraction, measurement by GC-MS or HPLC				
	PCBs	Soxhlet extraction, measurement by GC-MS or HPLC				
	¹³⁷ Cs	Gamma spectrometry system comprising an HPGe detector				
Scales to	For each parameter, please	e state the predefined scale that is used to assess progress				
assess (110						
Scales to assess GES	Cu, Zn, Cd, Pb Cu, Zn, Pb Hg PAHs PCBs ¹³⁷ Cs For each parameter, pleas towards GES, if any.	Digestion with concentrated acids (HF, HNO ₃), measured using FAAS, or GFAAS. X-ray Fluorescence Microwave digestion, Measurement by CV-AAS Soxhlet extraction, measurement by GC-MS or HPLC Soxhlet extraction, measurement by GC-MS or HPLC Gamma spectrometry system comprising an HPGe detector e state the predefined scale that is used to assess progress				

SOUTH EUROPEAN SEAS

FACTSHEET 6: Contaminants – In Biota

Descriptor	D8/D9 Contaminants						
Indicator	In biota						
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year). Note: To convert ww to dw use a conversion factor of 2.5 (approximate)						
	Parameter	Background	Upper Limit	Unit	Monitoring		
		Level			Frequency		
	Mussels				2 times a year		
	Pb	0.16	1.5	mg/kg ww			
	Cd	0.12	1	mg/kg ww			
	Нg	0.01	0.5	mg/kg ww			
	benzo (A) pyrene	0	0.010	mg/kg ww			
	PCBs	0	0.03	mg/kg ww			
	¹³⁷ Cs		1250	Bq/kg			
	Mullus Barbatus						
	Pb	0.025	0.3	mg/kg ww			
	Cd	0.025	1	mg/kg ww			
	Hg	0.035	1	mg/kg ww			
	benzo (A) pyrene	0	0.002	mg/kg ww			
	PCBs	0	0.45	mg/kg ww			
	¹³⁷ Cs		1250	Bq/kg	One-off		

 $\textcircled{\bullet}$

IN THE

Comments	Please state whether there	are areas where the background level is higher or lower that	n						
regarding	that stated above								
background	The measurements are con	nducted on bivalves and fish that are destined for human							
and upper	consumption, so there is r	to clear indication on the fisheries they originate from.							
mmus	However, considerably m	gner values have been measured in Saronikos guil.							
Indicative	For each of the above parameters please give indicative values, as measured by your								
values	country's monitoring plan								
	Parameter	Kange / Indicative value							
	Mussels								
	Pb	0.84-4.31 / 2.5 μg/g dw							
	Cd	0.04-3.22 / 0.6 μg/g dw							
	Hg	0.05-0.63 / 0.2 µg/g dw							
	137 Cs	0.1-1.23bq/kg /							
	PAHs	25-640 μg/kg dw/ 279 μg/kg dw							
	PCBs	2.5-36.45 µg/kg dw / 12.8 µg/kg dw							
	Mullus barbatus								
	PCBs	0.3-5.62 μg/kg dw/ 0.6							
	Рb	0.04-16 μg/g dw/ 0.54							
	Cd	0- 4.11µg/g dw/ 0.413							
	Hg	0.003-6.15 μg/g dw / 0.55							
	137 Cs	Not available							
Method	Please state the method us	sed for measuring for each parameter and determining the							
	above values	Mathed and							
	Parameter	Miethod used							
	Hg	Microwave digestion							
		spectrophotometry (CV-AAS)							
	Pb, Cd	Ttreatment with concentrated nitric acid and measured by							
	·	GFAAS or FAAS.							
	PAHs	Soxhlet extraction, measurement by GC-MS or HPLC							
	37 Cs	measurements of 137Cs by direct, low-background high-							
		resolution Ge gamma spectrometry							
Scales to	For each parameter, pleas	e state the predefined scale that is used to assess progress							
assess GES	towards GES, II any.								

SOUTH EUROPEAN SEAS

ACTIVITY 3: SELF-ASSESSMENT TOOL FOR ASSESSING GES FOR EUTROPHICATION AND CONTAMINANTS

Country	Turkey
Region	Mediterranean
Neighboring	Aegean Sea-Marmara-Black Sea
Regions	
Partner	TUBITAK

SOUTH EUROPEAN SEAS

FACTSHEET 1: Eutrophication - Nutrients

Descriptor	D5 Eutrophication						
Indicator	Nutrients						
Parameters	The parameters for nutrients include nitrogen and phosphorus compounds, ammonia and sediment organic matter. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year)						
	Parameter	Background	Upper Limit	Unit	Monitoring		
		Level			Frequency		
	PO4_P	0,11 (0,04)*		μМ	1986-1997:		
	NO3+NO2_N	1,22 (0,36)*	(1)	μM	2-4/yr		
	NO2_N	0,40 (0,14)*		1999-2004:			
	NH4_N	2,35 (0,64)*	(1)	μΜ	2005-06:3/yr		
	SiO2	<u>2,46</u> (1,66)*	-	μΜ	2007-08:5/yr		
	ТР	0,44 (0,31)*	0,48 (2)	μM	2009: 3/yr 2010: 1/yr		
Comments regarding background and upper limits	Please state whether there that stated above Background values were of values >38.5 (not under t Turkish territorial area to However, number of data autumn period. Also #ofd Eastern Tr-coast. *In parenthesis, the media recommended as background influence especially in M the background values. (1): NO3+NO2+NH4<5 μ (2): TP<0,5 μM. According to the national conditions	are areas where t obtained as averag he direct impact of represent the who representing the v ata for eastern Me an (50%) values of und values becaus fersin Bay (where uM, legislation(2009)	he background leve ge for surface water of river flows) for v ole year during 1986 winter season is mu editerranean is mor f the above data se se the average value #ofdata is more) h	el is highen rs (0-10m) vhole Medi 6-2010 (n= uch less tha e than the t is present es include ence artific	r or lower than having salinity iterranean =1400 records). in spring- #ofdata for the ed and the domestic eially increase		
Indicative	For each of the above para	ameters please giv	ve indicative values	s, as measu	red by your		
values	country's monitoring plan	1					

SOUTH EUROPEAN SEAS

IRISSES

	Parameter	Indicative	e value					
	PO4_P	0,02-0,19	(min.valu	e - 90% p	percentile v	alue)		
	NO3+NO2_N	0,02-3,44	(min.valu	ue - 90%	percentile	value)		
	NO2_N	0,02-1,08	(min.valu	ue - 90%	percentile	value)		
	NH4_N	0,04-5,05	(min.valu	ue - 90%	percentile	value)		
	SiO2	0,01-5,08	(min.valu	ue - 90%	percentile	value)		
	ТР	0,03-0,68 (min.value - 90% percentile value)						
Method	Please state the method u above values	used for measuring for each parameter and determining the						
	Parameter	Method u	sed					
	PO4_P	Colorimet	Colorimetric : Grasshoff et al. 1983, S.M. 4500-P : 2005 G					
	NO3+NO2_N	Colorimet	ric : Grass	shoff et a	l. 1983, S.N	M. 4500-P :	: 2005 G	
	SiO2	SM 4500-	SiO2 C 2	1. 2005				
	TP	Persulfate oxidation- colorimetric : Grasshoff et al. 1983, S.M. 4500-P : 2005 G						
Scales to assess GES	For each parameter, pleas towards GES, if any.	parameter, please state the predefined scale that is used to assess progress GES, if any.						
	Initially 10percentil of da	ita is excepte	ed as refer	ence valu	ie and the r	ef+50% de	eviation is	
	the target value for GES.	Expert judg	ement for	this region	on is also u	sed.		
		NO3+NO2	NO2-N	NH4	PO4	TP	Si	
	Ref: 10% percentile	0,08	0,03	0,07	0,02	0,11	0,79	
	GES:10%+0.5(10%)	0,12	0,045	0,105	0,03	0,17	1,185	
	Expert	<0,55	<0,15	<0,4	<0,08	<0,4	>0,8	

Reference to the Project:

TUBITAK-MRC and MoEU-GDEM (2014). Marine and Coastal Waters Quality Determination and Classification Project (DeKoS). ÇTÜE 5118703, Report No. ÇTÜE.13.155 (Final Report), February 2014, Gebze-Kocaeli, Turkey.

SOUTH EUROPEAN SEAS

FACTSHEET 2: Eutrophication - Phytoplankton

Descriptor	D5 Eutrophication						
Indicator	Phytoplankton						
Parameters	The parameters for nutrients include chlorophyll a, primary production, microalgae and phytoplankton. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (ner year)						
	ParameterBackgroundUpper LimitUnitMonitoring						
		Level			Frequncy		
	Chl-a	0,98 (0,46)	-	μg/L	1986-1997:		
	Phytoplankton is also				2-4/yr		
	monitored however				1999-2004:		
	values are not set.				2005-06.3/vr		
	Diatom/flagellate				2003 00:5/yr 2007-08:5/yr		
	well as harmful sps				2009: 3/yr		
	are recorded				2010: 1/yr		
Comments	Please state whether the	ere are areas where	the background	level is higher	or lower than		
regarding	that stated above		-	-			
background	Background values were	re obtained as aver	age for surface v	vaters (0-10m)	having salinity		
and upper	values >38.5 (not under	er the direct impact	t of river flows) f	for whole Medi	terranean		
limits	Turkish territorial area to represent the whole year during 1986-2010 (n=1400 records). However, number of data representing the winter season is much less than spring- autumn period. Also #ofdata for eastern Mediterranean is more than the #ofdata for the						
	*In parenthesis, the me	dian (50%) values	of the above dat	a set is present	ed and		
	recommended as backg	round values beca	use the average	values include	the domestic		
	influence especially in	Mersin Bay (when	e #ofdata is mor	e) hence artific	cially increase		
	the background values.						
Indicative values	For each of the above p country's monitoring p	oarameters please g lan	give indicative va	alues, as measu	red by your		
	Parameter	Indicative val	ue				
	Chl-a	0.01-2,67 (mi	n.value - 90% pe	ercentile value)			

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

Method	Please state the method used for measuring for each parameter and determining the above values						
	Parameter	Method used					
	Chl - a	GF/F, Acetone extraction, spectrophotometric					
Scales to	For each parameter, pleas	e state the	predefined scale that is used to assess progress				
assess GES	towards GES, if any.		· · · ·				
		Chl-a					
	Ref: 10% percentile	0,07					
	GES: 10%+0.5(10%)	0,105					
	Expert	<0,6					

Reference to the Project:

TUBITAK-MRC and MoEU-GDEM (2014). Marine and Coastal Waters Quality Determination and Classification Project (DeKoS). ÇTÜE 5118703, Report No. ÇTÜE.13.155 (Final Report), February 2014, Gebze-Kocaeli, Turkey.

SOUTH EUROPEAN SEAS

FACTSHEET 3: Eutrophication - Other

Descriptor	D5 Eutrophication						
Indicator	Other						
Parameters	The parameters for nutrients include secchi depth and dissolved oxygen concentration.In the table below, please add all the parameters that are being monitored AND forwhich there are available monitoring data. Add the most characteristic parameters forour region first.For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).ParameterBackground LevelUpper LimitUnitMonitoring Frequency						
	SDD						
	DO						
Comments regarding	that stated above	e are areas where t	ine backgroui	nd level is high	gher or lower than		
background and upper limits							
Indicative values	For each of the above par country's monitoring plan	ameters please giv	ve indicative	values, as me	easured by your		
	Parameter	Indicative valu	e				
	SDD	Not properly co	vered by mor	nitoring plan			
	DO						
Method	Please state the method u above values	sed for measuring	for each para	ameter and d	etermining the		
	Parameter	Method used					
	SDD	Secchi disk					

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

	DO	Winkler method					
Scales to	For each parameter, please state the predefined scale that is used to assess progress						
assess GES	towards GES, if any.						
	Expert view:						
	- GES target for SD would be >7m.						
	- GES target for subsurface (bottom or lower layer) waters would be >75%						
	They are proposed for coastal (not open, oligotrophic sea) >38.5 salinity waters.						

Reference to the Project:

TUBITAK-MRC and MoEU-GDEM (2014). Marine and Coastal Waters Quality Determination and Classification Project (DeKoS). ÇTÜE 5118703, Report No. ÇTÜE.13.155 (Final Report), February 2014, Gebze-Kocaeli, Turkey.

SOUTH EUROPEAN SEAS

FACTSHEET 4: Contaminants – In Water

NOT MESURED

Descriptor	D8/D9 Contaminants					
Indicator	In water					
Parameters	The parameters for nutrients include synthetic substances (e.g. PAHs, PCBs, pesticidesetc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleumhydrocarbons and radionuclides.In the table below, please add all the parameters that are being monitored AND forwhich there are available monitoring data. Add the most characteristic parameters forour region first.For each of these parameters, please give the background level (the yearly averagenaturally occurring concentration) the upper limit (as set by national or Europeanlegislation), as well as the units that these are measured in, and the monitoring frequency(per year).ParameterBackgroundUpperUnitMonitoring					
		Level	Limit		Frequency	
Comments regarding	Please state whether there that stated above	are areas where the	e background	level is higher	or lower than	
background and upper limits						
Indicative values	For each of the above para country's monitoring plan	ameters please give	indicative val	ues, as measur	ed by your	
	Parameter	Indicative value				
Method	Please state the method us above values	sed for measuring for	or each param	eter and determ	nining the	
	Parameter	Method used				
Scales to	For each parameter, pleas	e state the predefine	ed scale that is	s used to assess	progress	
assess GES	towards GES, if any.					

SOUTH EUROPEAN SEAS

IN THE

FACTSHEET 5: Contaminants – In Sediment

DATA ON ORGANIC CONTAMINANTS IS SCARCE. NEEDS FURTHER DATA ANALYSIS.

Descriptor	D8/D9 Contaminants							
Indicator	In sediment							
Parameters	The parameters for nutrients include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).							
	ParameterBackgroundUpperUnitMonitoring							
		Level	Limit		Frequency			
	Cd (dry weight)	110		µg/kg	l / yr			
	Hg (dry weight)	216		µg/kg	1 / yr			
	Pb (dry wt)	33		mg/kg	1 / yr			
	Zn (dry wt)	110 mg/kg 1 / yr						
	Cr (dry wt)	155 mg/kg 1 / yr						
	Cu (dry wt)	55		mg/kg	1 / yr			
Comments regarding	Please state whether there that stated above	e are areas where t	the background	l level is high	her or lower than			
background and upper limits	Average for 1999 and 2003-2009. Annual samplings for whole TR-MED.							
Indicative	For each of the above par	ameters please giv	ve indicative va	alues, as mea	sured by your			
values	country's monitoring plar] Indiaativa ral	•					
	r arameter	indicative valu	e					

SOUTH EUROPEAN SEAS

IRIS SES

	Cd	13-586 (min – max values, dry wt, µg/kg)			
	Нg	4 - 1100 (min – max values, dry wt, μg/kg)			
	Pb	3,4-132 (min – max values, dry wt, mg/kg)			
	Zn	4 - 1505 (min – max values, dry wt, mg/kg)			
	Cr	1 – 1001 (min – max values, dry wt, mg/kg)			
	Cu	3,4 – 963 (min – max values, dry wt, mg/kg)			
Method	Please state the method used for measuring for each parameter and determining the above values				
	Parameter	Method used			
	All metals	UNEP RMs : RM-26, RM-27, RM-29, RM31, RM-39			
Scales to	For each parameter, pleas	e state the predefined scale that is used to assess progress			
assess GES	towards GES, if any.				
	Sediment quality criteria	has to be developed for GES and non-GES. Not done yet.			
	So, we used in DeKoS (our national Project, 2011-2013) ERL and Enrichment Factor				
	assessments.				

Reference to the Project:

TUBITAK-MRC and MoEU-GDEM (2014). Marine and Coastal Waters Quality Determination and Classification Project (DeKoS). ÇTÜE 5118703, Report No. ÇTÜE.13.155 (Final Report), February 2014, Gebze-Kocaeli, Turkey.

SOUTH EUROPEAN SEAS

IRISSES

FACTSHEET 5: Contaminants – In Biota

FISH (MB) WAS MONITORED DURING 1999-2007 ONLY AT 3 TRAWL ST IN THE N-EAST MED. DO NOT REPRESENT THE WHOLE AREA.

2011-TODAY MONITORING PROGRAMME HAS A BETTER COVERAGE.

Descriptor	D8/D9 Contaminants							
Indicator	In biota							
Parameters	The parameters for nutrients include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).							
	Parameter	Background Upper Limit Unit Monitoring						
		Level			Frequency			
Comments	Please state whether there	are areas where	the background	evel is high	her or lower than			
regarding	that stated above							
background and upper limits								
Indicative values	For each of the above para country's monitoring plan	ameters please g	ive indicative val	ues, as mea	asured by your			
	Parameter	Indicative value						
Method	Please state the method us above values	sed for measurin	g for each parame	eter and de	termining the			
	Parameter	Method used						
Scales to assess GES	For each parameter, pleas towards GES, if any.	e state the prede	fined scale that is	used to as	sess progress			

Appendix C – The DeCyDe-4-IRIS Participatory self assessment method towards GES and MSFD integrated monitoring.

C.1. Introduction – concept

In order to serve the needs for GES of MSFD, and have a strategic role in the decision making process, the DeCyDe-4 method has been adapted to IRIS-SES needs and the DeCyDe-4-IRIS method and toolbox has been developed. The aim is threefold:

- To develop a strategic decision support method and framework that supports the decision makers and the stakeholders to understand and justify the main issues that are involved in the process of decision-making and the trade-offs between different decision alternatives.
- To enhance experts and key actors involvement and create an engagement toolbox and
- To develop a self- assessment tool for GES and integrated monitoring efforts, supporting IRIS's aim for *sustainability of achievements*. The tool will remain in operation and be part of the monitoring process, after the end of the project.
- To develop a set of guidelines on implementable abatement measures that can be considered in countries' strategic roadmap/ action plan, in their policies for implementing MFSD, towards GES.

The DeCyDe-4-IRIS method was developed for two descriptors (5 and 8/9), and will be implemented at the regional level during the two IRIS regional stakeholder meetings (one for the Mediterranean and one for the Black Sea) that will be held during the project.

C.2. Implementing DeCyDe-4-IRIS method

The process of the implementation of the DeCyDe-4-IRIS method in IRIS regional workshops consists of the following three successive parts, from A to C. It is important to ensure that the participants in the regional stakeholder meetings are able to provide real site specific input and expertise, and will be committed to incorporate the new methods and suggestions in their work/ processes:

C.2.1 PART A: Preparatory phase

Partners will be asked to be prepared for the workshop, in order to maximize the impact of the workshop outcomes. Two documents will be sent to the partners at least one month before the workshop: the factsheets for descriptors 5 and 8/9 and the stakeholder mapping, as described below. Partners will complete them and will send the completed, site specific documents to ISOTECH prior to the meeting, in order to set up the score board for each partner country, as described in part B of this document.

- 1. *The DeCyDe-4-IRIS factsheets for Descriptors 5 and 8/9*: at least one month before each of the regional stakeholder workshop, the participating partners will receive certain factsheets that they will have to complete, regarding eutrophication and contaminants. Using these factsheets, partners will need to provide information on eutrophication and contaminant parameters that are being measured in specific region(s) in their country. Partners will be required to choose regions that are neighboring to other partner countries. The information that partners will have to report appears in the attached factsheet and includes:
 - a. what is being monitored (adding the 5 most important parameters at the top),
 - b. How, i.e. the method of monitoring
 - c. what is the baseline concentration in the particular region, what is the upper level set by national or European legislation and what are indicative values recorded in that specific region.

It is important to keep in mind, that the information required here should be brief and representative.

2. *Mapping of key actors and stakeholders*: The list of the DeCyDe-4-IRIS key actor and stakeholder categories that have an important role in MFSD descriptor monitoring and the target of GES, has been prepared and will be sent to the partners that will attend each of the regional stakeholder workshops. The partners should identify people that fall within those specific categories. The stakeholder/ key actors "blend" list will form part of the discussion during Part D of the regional workshops, aiming to identify possible

problems and needs when trying to involve stakeholders. It is thus important that the partners communicate with the people whom they will identify as national stakeholders/ key actors, in order to have a real idea of their reactions, suggestions, and needs. The stakeholders/ key actors will form the national IRIS stakeholder group, which will play an important role for the implementation and sustainability of IRIS outcomes.

IRIS SES

C.2.2 PART B: The DeCyDe-4-IRIS toolbox:

1. The DeCyDe-4-IRIS "score board": Based on the existing situation, that will be derived from the DeCyDe-4-IRIS factsheets in each region, i.e. the parameters that have been identified as important for each descriptor, and the background and upper levels recorded in the factsheets, Isotech will deduct the "ranges" that will be used in the self-assessment tool, aiming at GES. The DeCyDe-4-IRIS score boards will be developed and set up for each country for the specific region which will be identified by the partners on the factsheets, in order to be ready during the IRIS Regional Workshop to work with this tool. Apart from addressing the GES, the scoreboards will include the frequency of monitoring per country/region, per parameter, per descriptor, in order to provide regional participants with more tools to promote cooperation in descriptors monitoring.

2. The Source-pollutant Matrix per descriptor

a. The *Source-pollutant Matrix*, will be developed for each descriptor. The matrix will address the main sources of pollutants for each of the descriptor parameters. It will be used alongside the self-assessment tool to assist decision-makers and stakeholders to pinpoint possible causes for underperformance.

3. The list of Abatement Measures per source/industrial sector

a. Mapping the sources of pollutants and the identification of solutions/measures per source of pollution is a very challenging perspective, which is not part of IRIS tasks. A general list of possible Abatement Measures is developed through DeCyDe-4-IRIS and used here, as a tool. The Abatement Measures list will be used by together with the Source-pollutant Matrix to provide with a framework that supports the decision makers and the stakeholders to understand and justify

the main issues that are involved in the process of decision-making and the tradeoffs between different decision alternatives.

IRISSES

C.2.3 PART C: The DeCyDe-4-IRIS Regional Workshop

Part C of the methodology will be implemented during the IRIS Regional Workshop. Stakeholders and decision makers are expected to participate to IRIS-SES regional workshops.

Each workshop will last about 4 hours. The collective opinions of these partners (key actors and stakeholders) as per the gaps and needs in monitoring and the possible implementation of abatement measures towards GES, will be drafted into a report, to be presented to the Commission as part of IRIS-SES strategic suggestions.

The workshops are structured on group work and will have **three** distinct but interrelated stages, aiming to:

- Guide the partners through the Self Assessment process;
- Identify the gaps, problems and needs of their country/region with regards to eutrophication and contaminants monitoring
- Discuss on possibilities of joint monitoring
- Improve coordination among neighboring countries.
- Discuss possible abatement measures for the improvement of GES

Step 1:

The DeCyDe-4-IRIS self-assessment tool - Scoring through ranges to identify the problems: To start off the workshop, the participants will be asked to form "regional groups", i.e. groups with participants from their neighboring countries/regions. Using the information submitted in the factsheets according to their country and using the DeCyDe-4-IRIS self-assessment tool developed for each region/country and the factsheets, in which indicative concentrations of parameters were recorded, they will score their country/region. The scores of individual countries/regions will be discussed among the regional groups and major differences will be identified and discussed. Where scores are lower than the average, a discussion on the possible

reasons will help identify the problems in specific regions or countries. Each group will present their outcomes to the plenary.

Step 2:

Gaps in cooperation in MSFD descriptors monitor - proposals on how to improve joint monitoring possibilities: having their self assessment tools filled and discussed the participants will be asked again to go back to their groups for the second DeCyDe-4-IRIS workshop:

- a. what are the monitoring/measurement needs in each country and what are the common ones for the region. Each participant will be given 1 post-it on which to write the major need according to their opinion. Then each group will identify the common needs of their group.
- b. Following the same procedure as in point (a) above, the participants will be asked to identify possible collaboration opportunities (i.e. whether the monitoring scheme of one country/region could be expanded to include another country/region and fill in a monitoring gap, joint use of infrastructure etc).

The groups will then be asked to report this back to plenary.

The results from activities (a) and (b) will be collected and grouped according to their category (i.e. whether they regard infrastructure, policy etc) and if possible their region and will be reported.

Step 3:

Abatement Measures: This part of the workshop starts with an open discussion on the sourcepollutant relationships, using the source pollutant matrix as a tool. Then the participants will again go back to their groups and will be asked to identify 1-2 possible measures, from the Abatement Measures List, that can be implemented per source/ per descriptor, in their region. Each group will report to plenary. This part of the workshop will provide with a useful strategic tool: possible implementable abatement measures will be identified by the decision makers/ stakeholders themselves in cooperation with their counterparts from the neighbouring countries. The result of this innovative and participatory part of the workshops will form a guideline for promoting specific actions towards GES.

C.3. Scope and expected outcomes of the DeCyDe-4-IRIS Workshop

The DeCyDe-4-IRIS workshop will enable key actors, decision makers and stakeholders to:

- 1. **Introduce in their activities a self-assessment process:** with the use of the self-assessment tool, partners will be able to "score" their country/region with regards to meeting GES for Descriptors 5 and 8/9, monitor their progress over time and test the effects of any changes in monitoring and management to their overall score. Easily identify which parameters need to be improved in order to increase their overall score.
- 2. Record the challenges and opportunities to improve regional cooperation for the implementation of the Marine Strategy Monitoring Schemes. Provide with the experts opinion on monitoring gaps and needs and ideas on how-to improve joint monitoring actions on MFSD descriptors;
- **3.** Formulate a strategic guideline, with specific and implementable abatement measures that will support MFSD target of GES

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

IN THE

SOUTH EUROPEAN SEAS

IRIS SES

Appendix D – Proposed Abatement Measures to Improve the Environmental Status Related to Eutrophication (D5) and Contaminants (D8/D9)

Source 1: Municipal Waste

A. Sewage

- 1. Absorption pits
- 2. Sewerage system with primary wastewater treatment and discharge in the sea
- 3. Sewerage system with secondary wastewater treatment and discharge in the sea
- 4. Sewerage system with tertiary wastewater treatment and discharge in the sea
- 5. Sewerage system with primary wastewater treatment and use of treated water for agricultural or other purposes
- 6. Sewerage system with secondary wastewater treatment and use of treated water for agricultural or other purposes
- 7. Sewerage system with tertiary wastewater treatment and use of treated water for agricultural or other purposes
- 8. Sewerage system with tertiary wastewater treatment and additional nutrient minimization techniques
- 9. Place emergency outfalls for wastewater treatment plans away from the coast
- 10. Return of treated water to main users
- 11. In coastal hotels:
 - a. Minimize the use of chemical fertilizers on grass and green spaces
 - b. Replace chemical fertilizers with low release organic soil conditioners (e.g. compost)
 - c. Establish private water desalination plants
 - d. Secure the diversion of sewage from the sea by:
 - i. Establishing connections with the sewerage system
 - ii. Implementing private tertiary treatment stations with controlled use of water on-site
 - iii. Storage in watertight tanks and transfer to a central treatment station
- 12. Other (please specify)

SOUTH EUROPEAN SEAS

B. Other Municipal Discharges

- 1. Avoid the direct discharge of rainwater to rivers and the sea
- 2. Create artificial reef ponds/ buffer zones or other areas of vegetation
- 3. Replace materials that release pollutants e.g. PAHs, heavy metals (from e.g. asphalt, petrol) with other less harmful alternatives
- 4. Other (please specify)

Source 2: Industrial Waste

- 1. Separate waste streams to ensure the proper management of each stream
- 2. According to the waste stream, the following methods can be applied:
 - a. Reuse in other operations
 - b. Material recovery
- 3. Pre-treatment of wastewater and transfer to a central municipal wastewater treatment plant
- 4. Central industrial wastewater treatment plant in industrial zones
- 5. Private wastewater treatment plants
- 6. Watertight evaporation ponds, or watertight tanks that will hold the wastewater until it is ready to be transported to a wastewater treatment plant
- 7. Limit emissions through stricter legislation and practical measures e.g. new equipment that minimizes PAH emissions from diesel central heating engines
- 8. Other (please specify)

Source 3: Farming including aquaculture

- 1. Apply automatic control and feeding systems-codes-technologies in farming aquaculture
- 2. Periodically or permanently transfer aquaculture cages to a significant distance from the coast
- 3. Reduction of hatcheries wastewater polluting load through managerial, or/and technological interventions

4. Construct watertight evaporation tanks for the diversion of liquid-solid farming waste from surface runoff

IRIS SES

- 5. Anaerobic digestion at the central and private level
- 6. Other waste treatments (e.g. soil conditioners etc.)
- 7. Rainwater control on farming units
- 8. Use appropriate material and carry out due studies for watertight evaporation tanks
- 9. Other (please specify)

Source 4: Agriculture

- 1. Promote organic agriculture
- 2. Apply a good agricultural practice code, complimented by a certification process
- 3. Training-Awareness Raising campaigns on proper agricultural care for the reduction of chemical/synthetic fertilizers and/or the gradual use of slow release organic soil conditioners (e.g. compost)
- 4. Prohibit the use of chemical fertilizers to end nitrification (protected EU areas)
- 5. Use alternative crops with limited fetilisation requirements
- 6. Promote crop rotation with appropriate crops/species
- 7. Other (please specify)

Source 5: Shipping – Nautical Tourism and Energy (hydrocarbon exploration and mining)

- 1. Avoid copper based antifoulants
- 2. Provide incentives for technical modifications / changes to ship engines to improve combustion and reduce emissions
- 3. Impose stricter ship emission limits
- 4. Prohibit the disposal of wastewater from boats, regardless of boat size
- 5. Implement an indirect fee system
- 6. Other (please specify)

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

Appendix E – List of Participants at the Eastern Mediterranean DeCyDe-4-IRIS

Workshop

n/n	Name	Institute	Country
1	Antonis Petrou	AP Marine Environmental Consultancy Ltd	Cyprus
2	Argyrou Marina	Ministry of Agriculture, Natural Resources and	Cyprus
		Environment	
3	Basset Alberto	UNISALENTO (Universitá del Salento)	Italy
4	Boicenco Laura	NIMRD (National Institute of Marine Research	Romania
		and Development "Grigore Antipa")	
5	Cozzoli Francesco	UNISALENTO	Italy
6	Dassenakis Manos	UoA (University of Athens)	Greece
7	Drakopoulou Paraskevi	HCMR (Hellenic Centre for Marine Research)	Greece
8	Ebru Olgun	Environment and Urbanization Expert	Turkey
		Ministry of Environment and Urbanization of	
		Turkey	
9	Foden Mary	OSPAR Commission	
10	Francisco Alemany	IEO (Instituto Español de Oceanografía)	Spain
11	Giannoudi Louisa	HCMR	Greece
12	Golumbeanu Mariana	NIMRD	Romania
13	Hacer Selamoğlu	Environment and Urbanization Expert Ministry of	Turkey
	Çağlayan	Enviroment and Urbanization of Turkey	
14	Johanna Karhu	HELCOM (Baltic Marine Environment Protection	
		Commission)	
15	Juan Bellas	IEO	Spain
16	Kamberi Eleni	HCMR	Greece
17	Karageorgis Aris	HCMR	Greece
18	Kavadas Stefanos	HCMR	Greece
19	Kyriakidou Chara	HCMR	Greece
20	Lalliotou Barbara	YPEKA (Ministry of Environment, Energy and	Greece
		Climate Change)	

21	Lazar Luminita	NIMRD	Romania
22	Loizides Michael	ISOTECH Ltd Environmental Research and Consultancy	Cyprus
23	Loizidou Xenia	ISOTECH Ltd Environmental Research and Consultancy	Cyprus
24	Louropoulou Evangelia	UoA	Greece
25	Makarenko Irina	Black Sea Commission	
26	Moncheva Snejana	IO BAS (Institute of Oceanography – Bulgarian Institute of Sciences)	Bulgaria
27	Orthodoxou Demetra	ISOTECH Ltd Environmental Research and Consultancy	Cyprus
28	Pagou Kalliopi	HCMR	Greece
29	Panagiotidis P.	HCMR	Greece
30	Papathanassiou Evangelos	HCMR	Greece
31	Paramana Theodora	UoA	Greece
32	Reizopoulou S.	HCMR	Greece
33	Simboura Nomiki	HCMR	Greece
34	Spanu Alina	NIMRD	Romania
35	Streftaris Nikos	HCMR	Greece
36	Tsangaris Catherine	HCMR	Greece
37	Vassilopoulou	HCMR	Greece
38	Vosniakos Fokion	B.EN.A (Balkan Environmental Association),	Greece
		Alexander Technological Educational Institute of Thessaloniki	
39	Maina Irida	HCMR	Greece
40	Laiaki Maria	HCMR	Greece
41	Gurban Gyorgyi	UNEP (United Nations Environment Programme)	

