

 $\textcircled{\bullet}$

SOUTH EUROPEAN SEAS

Report on the Implementation of the DeCyDe-4-IRIS Method and Tools at the Black Sea Stakeholder Workshop

Constanta, Romania

12 January 2015

March 2015

Isotech Ltd Environmental Research and Consultancy

Funded by the European Commission – DG Environment

SOUTH EUROPEAN SEAS

Table of Contents

1. The aim of the IRIS-SES stakeholder workshops	2
2. The Black Sea Stakeholder Workshop	3
2.1. The preparatory phase	3
2.1.1. Gathering data and information	3
2.1.1.1. Stakeholder Mapping: Identifying stakeholders and key actors	3
2.1.1.2. The role of local IRIS-SES partners	5
2.2. The development of the DeCyDe-4-IRIS Toolbox	6
2.2.1. The DeCyDe-4-IRIS scoreboards for each region	6
2.2.2. The source-pollutant matrix	7
2.2.3. The list of abatement measures	8
2.3. The DeCyDe-4-IRIS workshop	8
2.3.1. Structure and aims	8
2.3.2. Attendees	9
3. The DeCyDe-4-IRIS Black Sea workshop outcomes	. 10
3.1. Outputs from the DeCyDe-4-IRIS Self-Assessment Tools	. 10
3.2. Outputs from the identification of monitoring gaps and needs	. 10
3.3. Outputs from the identification of collaboration opportunities	. 12
3.4. Outputs regarding proposed abatement measures	. 13
Appendix A – Schematic Representation of the DeCyDe-4-IRIS Workshops	. 16
Appendix B – The DeCyDe-4-IRIS Completed Factsheets for the Eastern Mediterranean	
Countries	. 17
Appendix C – The DeCyDe-4-IRIS Participatory self assessment method towards GES and	
MSFD integrated monitoring.	. 66
Appendix D – Proposed Abatement Measures to Improve the Environmental Status Related to)
Eutrophication (D5) and Contaminants (D8/D9)	. 72
Appendix E – List of Participants at the Black Sea DeCyDe-4-IRIS Workshop	. 75

 $\textcircled{\bullet}$

IN THE SOUTH EUROPEAN SEAS

1. The aim of the IRIS-SES stakeholder workshops

Within project IRIS-SES 'Integrated Regional monitoring Implementation Strategy in the South European Seas', four regional stakeholder workshops are planned: one in the Western Mediterranean, one in the Central Mediterranean, one in the Eastern Mediterranean and one in the Black Sea. The aim of these workshops is to help make informed decisions about local and regional monitoring needs by establishing a two-way communication flow between the IRIS-SES project and the bodies responsible for MSFD monitoring.

The first workshop was organized in Athens, Greece on 24 October 2014 and involved stakeholders from the Eastern Mediterranean countries of Cyprus, Greece and Turkey¹. The current report describes the outcomes from the second stakeholder workshop organized within IRIS-SES, held in the Black Sea.

¹ The outcomes from the Eastern Mediterranean stakeholder workshop are described in details in the IRIS-SES 'Report on the Implementation of the DeCyDe-4-IRIS Method and Tools at the Eastern Mediterranean Stakeholder Workshop'

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

IRIS SES

2. The Black Sea Stakeholder Workshop

The Black Sea stakeholder workshop was held in Constanta, Romania on the 12th of January 2015 and brought together experts and stakeholders from Bulgaria, Romania and Turkey, in order to discuss the implementation of the MSFD monitoring in their countries and identify possible collaboration opportunities. There were three parts to the workshop: the preparatory phase, the development of the toolbox, and the workshop itself. Appendix A shows a schematic representation of each of these phases, whereas the rest of this chapter provides a more detailed description.

2.1. The preparatory phase

This phase was concerned with gathering (a) the relevant information and (b) identifying the most suitable stakeholders and key actors for participation in each workshop, through a dedicated stakeholder mapping exercise per country.

2.1.1. Gathering data and information

To gather the necessary information for the successful implementation of the workshop, Isotech developed factsheets regarding the monitoring of eutrophication (Descriptor 5) and contaminants (Descriptors 8 and 9). The factsheets (Appendix B) aimed to capture information regarding the parameters that are being measured for these Descriptors, the frequency of monitoring, the background and upper limits for each parameter, as defined by national or European legislation, any scales used to assess Good Environmental Status (GES), indicative values for each parameter and the monitoring method used. Where provided information was unclear, Isotech contacted the relevant project partners to clarify it.

2.1.1.1. Stakeholder Mapping: Identifying stakeholders and key actors

This part of the preparatory phase aimed to identify the key stakeholders to be invited to the workshop. Using a stakeholder mapping approach, Isotech facilitated each partner in the identification of stakeholders and key actors in the Marine Strategy Framework Directive (MSFD) process.

The aim of this mapping activity was to bring together and support active participation and commitment from the major groups of key actors and stakeholders in each country/ region, regarding the MSFD and the processes that are included in order to achieve GES.

IN THE

SOUTH EUROPEAN SEAS

Five major key actors and stakeholders groups were identified and subgroups were defined (see Table 1 below):

- The "producers" of pollution;
- The decision makers for "solutions";
- The implementing, inspecting and monitoring actors and authorities;
- Civil society; and
- Media.

Table 1 Indicative list of key actor/ stakeholder categories for IRIS-SES

1	Government and/or policy making	Local National Other			
2	Inspectorates and monitoring bodies/ authorities	It is important to include representatives from the relevant bodies/ authorities responsible for inspecting the major sources of marine pollution. Their input is important.			
3	3 Waste Water Management Councils/ Boards/ Authorities				
4	Coastal and inland Coastal tourism/ hotel industry				
	industry	Sewage treatment industries			
		Farmers			
		Energy industry			
		Shipbuilding/ ship repairing industry			
		Other			
5	Marine industry	Commercial fishing			

IN THE

SOUTH EUROPEAN SEAS

		Shipping
		Off-shore industries
		Nautical tourism/ marine related tourism activities
		Aquaculture
		Other
6	Civil Society	NGO / SCO
		Professional Bodies
		Other
7	Media/ Awareness	Newspaper/ Radio/ TV
		Online

2.1.1.2. The role of local IRIS-SES partners

Local IRIS-SES partners were asked to identify key actors and stakeholders from each category in their country (see full list of key actor and stakeholder categories in Table 1). The importance of carefully selecting the representatives from the involved key actor/ stakeholder categories was emphasised, as a means of ensuring that they would provide real site-specific input and expertise and would be committed or willing to incorporate the new IRIS-SES methods in their work/ processes.

The factsheets and the stakeholder mapping documents, together with a description of the DeCyDe-4-IRIS methodology for the workshops (Appendix C), were shared with the IRIS-SES partners in the Black Sea countries of Bulgaria, Romania and Turkey, at least two months ahead of the workshop. The partners were asked to complete the information in the factsheets, for one region within their country that would act as a pilot region, either using their own knowledge or experience or by contacting the relevant authorities in their countries. Likewise, the partners were asked to identify those stakeholders that could be invited to participate in the workshop. Due to the limited number of stakeholders that could be invited, emphasis was placed on

SOUTH EUROPEAN SEAS

IN THE

selecting stakeholders that were involved with the MSFD monitoring and/or with decisionmaking regarding the MSFD monitoring.

2.2. The development of the DeCyDe-4-IRIS Toolbox

In preparation of the DeCyDe-4-IRIS regional meetings, Isotech developed the DeCyDe-4-IRIS Toolbox, a suite of tools that were necessary for the implementation of the workshop, and comprising of: (1) the scoreboards for each region, i.e. for the south-eastern Mediterranean (workshop held in Athens, October 2014) and the Black Sea (2) the DeCyDe-4-IRIS Self-Assessment Tools (3) the source-pollutant matrix and (4) a list of possible abatement measures per sector.

2.2.1. The DeCyDe-4-IRIS scoreboards for each region

Using the information that each country provided in the factsheets, specifically the background and upper limits and any existing scales for assessing GES, Isotech developed the DeCyDe-4-IRIS Self-Assessment Tools, specifically for each country, i.e. they are country-specific. The excel-based scoreboards use the approach of scoring through ranges to help countries, or regions within countries, visualize the current situation with regards to meeting the goals of good environmental status. The ranges for the scoring are identified by a group of experts from each country, based on national, EU and International Standards, upper and lower limits and GES targets.

Figure 1 shows an extract from the self-assessment tool developed for Bulgaria. These specific tables relate to Descriptor D5, eutrophication, and were developed based on the information that the Bulgarian IRIS-SES partner (IO-BAS) provided in the factsheets. The factsheets provided upper and lower limits for these parameter categories (Nutrients, Phytoplankton and Secchi Depth) and using these values a linear scale of score ranges was defined. Scores were assigned to each of these ranges/scales based on the average monitored values provided by IO-BAS in the completed factsheets. In this way, the current situation is assessed and a number is provided to describe it. The last column, entitled 'Indicator Score', automatically calculates the average of all the parameters that describe each of the indicators (e.g. for 'Nutrients', the Indicator Score is calculated as the average of the scores for 'Nitrate-N' and 'Ammonia-N', 'Nitrite-N' and 'Phosphate-P'). When the score assigned to a specific parameter fell below the lower limit

Integrated Regional monitoring Implementation Strategy

IN THE

SOUTH EUROPEAN SEAS

assigned for that parameter in the completed factsheet, the score was circled, acting as a warning to the decision makers (see for example the score for 'Secchi Depth').

Each of the developed DeCyDe-4-IRIS Self-Assessment Tools (one per country) contains three tabs: one for the assessment of eutrophication such as the one that appears in Figure 1, a similar one for the assessment of contaminants, and one that summarizes the obtained scores and provides the total score for that particular country or region.

	D5 - EUTROPHI	CATION						
1	Nutrients	Units		Scoring Ranges				
			>40	28 < x ≤ 40	16 ≤ x ≤ 28	<16		
	1.Nitrate-N	μg/l	1	4	7	10		
						10		
			>22	15 < x ≤ 22	8 ≤ x ≤ 15	<8		
	2. Ammonia-N	μg/l	1	4	7	10		
						10	10.00	
			>10	8 < x ≤ 10	6 ≤ x ≤ 8	<6	10.00	
	3.Nitrite-N	μg/l	1	4	7	10		
						10		
			>10	7.5 < x ≤ 10	5 ≤ x ≤ 7.5	<5		
	4.Phosphate-P	μg/l	1	4	7	10		
						10		

2	Phytoplankton	Units		Scoring Ranges						
			>950	867 < x ≤ 950	783 < x ≤ 867	700 ≤ x ≤ 783	<700			
	1. Phytoplankton Biomass	mg/m ³	1	3	5	7	10			
							10			
			>800,000	700,000 < x ≤ 800,000	600,000 < x ≤ 700,000	500,000 ≤ x ≤ 600,000	<500,000			
	2. Phytoplankton Abundance	cells/l	1	3	5	7	10			
				3						
			>1.5	1.3 < x ≤ 1.5	1.1 < x ≤ 1.3	0.9 ≤ x ≤1.1	<0.9			
	Chlorophyll α	mg/m ³	1	3	5	7	10	3.20		
		(1	>						
	4. Diatom:Dinoflaggelates		<6.3	6.3 < x ≤ 6.8	6.8 < x ≤ 7.4	7.4 < x ≤ 8.0	>8.0			
	4. Diatom.Dinoriaggerates (spring)	N/A	1	3	5	7	10			
	(3prmg)	(1	>						
	5. Integrated Phytoplankton		<6.3	4.4 < x ≤ 6.3	2.6 < x ≤ 4.4	0.8 < x ≤ 2.6	>0.8			
	5. Integrated Phytoplankton Index	N/A	1	3	5	7	10			
	macx	(1	>						
3	Others	Units		Indicator Score						
			<5.5	5.5 ≤ x < 6.25	6.25 ≤ x < 7	≥7				
	1. Secchi Depth	m	1	4	7	10	1			

Figure 1 Extract from the DeCyDe-4-IRIS Self-Assessment Tool developed for Bulgaria.

2.2.2. The source-pollutant matrix

As the name suggests, the source-pollutant matrix (Figure 2) is an excel-based matrix that, for each of the parameters that characterize Descriptors 5 and 8/9, identifies the main sources of pollution, based on literature and bibliographic references. The matrix was used alongside the

IN THE

SOUTH EUROPEAN SEAS

completed self-assessment tool to assist decision-makers and stakeholders to identify the most likely pollution sources (main polluting sectors) for each of the parameters where the self-assessment tool demonstrated that there was room for improvement.

		Pollutant										
	PO ₄	NO ₃	NH_4	PAHs	PCBs	Pesticides	Cu	Zn	Cd	Pb	Hg	¹³⁷ Cs
Municipal Waste	X	Х	Х	Х	Х	X	Х	Х	х	Х		
Industrial Waste	Х	Х	Х	Х	Х		Х	Х	Х	Х	х	х
Farming Incl. Aquaculture	х	х	х									
Agriculture	Х	Х	Х			Х	Х					
Shipping	Х	х	Х	Х			Х			х		

Figure 2 The DeCyDe-4-IRIS source-pollutant matrix.

2.2.3. The list of abatement measures

For each of the main sectors that could result in the discharge of pollutants related to Descriptors 5, 8 and 9 in the marine environment, Isotech's group of experts also developed a list of possible abatement measures. Mapping the sources of pollutants and identifying solutions/measures per source is very challenging. The DeCyDe-4-IRIS approach aims to assist decision makers to easily pick out those measures that could be implemented in their country or region, based on the previous identification of main pollutant sources (section 2.2.2). The developed Abatement Measures List appears in Appendix D.

2.3. The DeCyDe-4-IRIS workshop

2.3.1. Structure and aims

The Black Sea DeCyDe-4-IRIS workshop took place at the premises of NIMRD "Grigore Antipa" Institute, in Constanta, Romania on 12 January 2015.

The DeCyDe-4-IRIS workshops are structured on group work and have three distinct but interrelated stages, aiming to:

- Guide the partners through the Self Assessment process;
- Identify the gaps, problems and needs of their country/region with regards to the monitoring of eutrophication and contaminants;

SOUTH EUROPEAN SEAS

- Discuss possibilities of joint monitoring;
- Improve coordination among neighbouring countries; and
- Discuss possible abatement measures for the improvement of GES.

2.3.2. Attendees

A total of 41 participants attended the Black Sea Regional Stakeholder Workshop, most of them representing universities, academies and institutes from Romania. However, the invited participants also included a representative from the Permanent Secretariat of the Black Sea Commission, two stakeholders/ key actors from Bulgaria representing the Black Sea Basin Directorate, and four stakeholders from Greece (representing the IRIS-SES project management group). The full list of participants appears in Appendix E. Unfortunately, no key actors/ stakeholders from Turkey were able to attend, but the draft version of this report was shared, through the Turkish IRIS-SES partner, with the Directorate General of EIA, Permits and Control, Department of Monitoring of the Turkish Ministry of Environment and Urbanisation, and their opinions on gaps and needs, joint monitoring and proposed abatement measures was obtained and included in this report.

 $\textcircled{\bullet}$

SOUTH EUROPEAN SEAS

3. The DeCyDe-4-IRIS Black Sea workshop outcomes

3.1. Outputs from the DeCyDe-4-IRIS Self-Assessment Tools

To begin with, the participants were split into groups according to their country of origin and were guided towards completing the DeCyDe-4-IRIS Self-assessment tools for their country. This allowed the participants to practice using the tool and to get a better feel for how it works. In the interest of time, the completed DeCyDe-4-IRIS self-assessment tool for Bulgaria was presented in plenary.

This exercise highlighted the importance of providing accurate and complete information in the factsheets, as this would determine the overall completeness of the tool.

3.2. Outputs from the identification of monitoring gaps and needs

Following the completion of the self-assessment tools, the stakeholders from each country were asked to identify the monitoring needs for their country and present them in plenary. Stakeholders were encouraged to use the DeCyDe-4-IRIS Self-assessment tools for their country, since they provided an overview of what is being measured and how.

The following monitoring requirements/gaps were identified:

For Bulgaria:

- There is a gap in phytoplankton monitoring frequency for the period of April September. This was accompanied by a suggestion to increase the phytoplankton monitoring frequency in these months to at least once per month.
- There is a need to conduct nutrient sampling in parallel to the monitoring of macro phytobenthos.
- There is insufficient data for the assessment of the transboundary pollution from the Danube.

For Romania:

• There are no measurements and thus no data regarding the atmospheric deposition of nutrients in the Black Sea.

IN THE

SOUTH EUROPEAN SEAS

- There is a gap in the regular sampling at stations at depths greater than 30 metres.
- There is a need to harmonize the sampling methods, as this would allow for more comparable data and outputs.
- Although there is a very strong scientific community, the public outreach of the work is minimal. There is a need to improve this.
- There is no data for micro-litter in Romania, and in the Black Sea in general.

For Turkey:

- The periods and frequencies of monitoring of different components of the integrated monitoring are not set clearly yet.
- The present application of 2 times/year for hydrochemistry and phytoplankton, once/year for macro-flora and macro-zoobenthos might not be enough to monitor the seasonal and inter-annual variations.
- Winter data are very scarce, therefore there is a need to include winter monitoring in the monitoring programme (initiated from 2015).
- The spatial resolution of the monitoring system is not enough to cover the deeper marine environment.
- Coastal water bodies (as nationally proposed in 2013) are big and are not adequately covered by the small number of macro-flora and zoobenthos monitoring stations. Therefore, there is a need to increase the spatial resolution for these biological quality elements.
- An assessment scale for phytoplankton abundance/ biomass is not being developed and used yet.
- Measurement of contaminants (all groups/parameters) is very time consuming and difficult. Both the matrices / target species as well as the list of contaminants to be monitored need to be limited for any set targets. Today, all groups and parameters are being monitored at a limited number of stations. Not all the coastal water bodies and almost none in the marine area are monitored.
- Monitoring of micro-plastics has recently been included in the monitoring programme as a methodological approach and at a pilot scale. However, appropriate indicators need to

IN THE

SOUTH EUROPEAN SEAS

be set and methods need to be standardized. Analysis and sorting in water and sediment matrices are time consuming.

IRIS SES

3.3. Outputs from the identification of collaboration opportunities

The next part of the workshop required all the participants to discuss possible collaboration opportunities between Bulgaria, Romania and Turkey regarding MSFD monitoring. The following were identified:

- 1. With the Danube River running through so many countries before it reaches Bulgaria and Romania and eventually draining into the Black Sea, it is no surprise that the issue of transboundary pollution featured greatly in discussions about joint monitoring. The participants recognized that this was a complex problem, further exacerbated by the fact that the Danube flows through countries that are not members of the European Union, and thus not bound by European legislation. The suggested solution involved the launch of common progress reporting, that would avoid the placing of blame, but would allow the identification of pollution sources and the means to address them.
- 2. The development of a Black Sea pollution sources database would allow for the determination of the accumulation of impact from neighbouring sources, such as waste treatment facilities and harbours.
- 3. A joint monitoring opportunity would arise if the various Black Sea countries would work under the same umbrella, for example through the implementation of common monitoring programmes funded by the EU (or other bodies). This would enable the consistent and comparable reporting of data as well as facilitate the sharing of data between countries.
- 4. The development of an 'available infrastructure index' was also identified as a possibility for joint collaboration, as it would allow Black Sea countries to share sea time, i.e. organize joint cruises thus sharing the cost, and would therefore optimize MSFD monitoring.
- 5. Joint monitoring could also take the form of use of common infrastructure such as research vessels, buoys etc. to collect data.

SOUTH EUROPEAN SEAS

6. Increasing the role of the Black Sea Commission in data collection and database utilization, including increasing the involvement of non-EU member states.

IRIS SES

- 7. Another opportunity of joint collaboration arises when it comes to the monitoring of marine litter and sound for the requirements of the MSFD. Since this is still at an early stage, it could be developed jointly for the entire Black Sea.
- 8. The use of automatic systems for joint monitoring, such as buoys or argofloats, would also enable joint monitoring in the Black Sea, as would the use of remote sensing technologies such as radars and satellites.
- 9. Collaboration on joint monitoring of nutrients and chemical pollution, firstly to identify the source of pollutants.

3.4. Outputs regarding proposed abatement measures

The last part of the workshop saw the participants of each country sitting back together and identifying the main pollution sources and most applicable abatement measures for their countries. This was done in a two step approach. In step one, the participants from each country identified the main sources of pollution via the source-pollutant matrix and in step two they reviewed the possible abatement measures for each identified source and selected those most applicable to their country.

The proposed abatement measures for Bulgaria concerned waste from the municipal sector, and included:

- The implementation of sewerage systems with secondary wastewater treatment and discharge in the sea, or
- The implementation of sewerage systems with primary wastewater treatment and use of treated waste for agricultural or other purposes.

For Romania, participants proposed a range of abatement measures for several polluting sectors:

- For municipal waste:
 - Upgrade or resize the existing wastewater treatment plants of Constanta.
 - Implement sewerage systems with secondary wastewater treatment and use of treated waste for agricultural or other purposes.
 - \circ Establish the connection of coastal hotels with the sewerage system.

IN THE

SOUTH EUROPEAN SEAS

• Create artificial reef ponds/buffer zones or other areas of vegetation to prevent pollution from other municipal discharges.

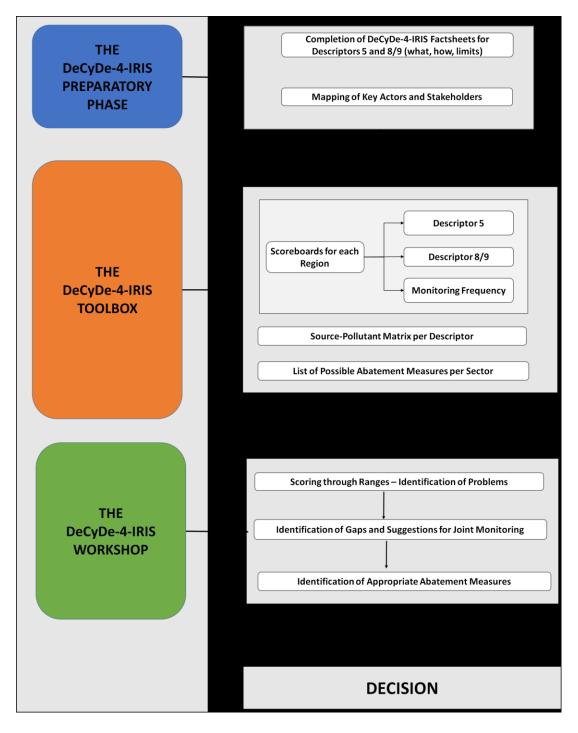
IRIS SES

- For industrial waste:
 - Reuse industrial waste in other operations.
 - Pre-treat industrial wastewater and transfer it to a central municipal wastewater treatment plant.
 - Develop central industrial wastewater treatment plants in industrial zones.
 - Limit emissions through stricter legislation and practical measures e.g. new equipment that minimizes PAH emissions from diesel central heating engines.
- For farming, including aquaculture:
 - Apply automatic control and feeding systems-codes-technologies in farming aquaculture.
 - Reduction of hatcheries wastewater polluting load through managerial and/or technological interventions.
- For agricultural waste:
 - Apply a code of good agricultural practices, complemented by a certification process, to minimize pollution from agriculture.
 - Provide training/ awareness-raising campaigns on proper agricultural care for the reduction of chemical/ synthetic fertilizers and/or the gradual use of slow release organic soil conditions (e.g. compost).
 - \circ Promote crop rotation with appropriate crops/ species.
- For the shipping industry:
 - Provide incentives for technical modifications/ changes to ship engines to improve combustions and reduce emissions.
 - Impose stricter ship emission limits.
 - Implement an indirect fee system.

The stakeholders from Turkey identified the following abatement measures that are applicable in their country:

• For municipal waste:

SOUTH EUROPEAN SEAS



- Establish municipal waste water treatment plants if possible in every municipality.
- For industrial waste:
 - Implement strict limits, especially for PAH and heavy metals, for deep marine discharges.
- For agriculture:
 - Limit pesticide usage.
 - Promote organic agriculture.
- For the shipping industry:
 - Decrease the number of hydroelectric plants and promote green energy production.

Appendix A – Schematic Representation of the DeCyDe-4-IRIS Workshops

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

Appendix B – The DeCyDe-4-IRIS Completed Factsheets for the Eastern Mediterranean Countries

ACTIVITY 3: SELF-ASSESSMENT TOOL FOR ASSESSING GES FOR EUTROPHICATION AND CONTAMINANTS

Country	BULGARIA
Region	Varna
Neighboring	
Regions	
Partner	IO-BAS

SOUTH EUROPEAN SEAS

FACTSHEET 1: Eutrophication – Nutrients

Descriptor	D5 Eutrophication							
Indicator	Nutrients							
Parameters	The parameters for nutrients include nitrogen and phosphorus compounds, ammonia and sediment organic matter. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).							
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency			
	Nitrate- N	<i>Spring</i> : <40 <i>Summer</i> :<16	Spring: 75 Summer: 40	µg/l	1-4 per year			
	Ammonia-N	Spring: <15 Summer: <8	Spring: 30 Summer: 22	µg/l	1-4			
	Nitrite-N	<i>Spring</i> : <10 <i>Summer</i> : <6	Spring: 13 Summer:10	µg/l	1-4			
	Phosphate-P	<i>Spring</i> : <10 <i>Summer</i> : <5	Spring: 15 Summer:10	µg/l	1-4			
	Organic Carbon in sediments			%	1			
Comments regarding background and upper limits	Please state whether there are areas where the background level is higher or lower than that stated above Used summer values for the development of the DeCyDe-4-IRIS tool as per the Bulgarian partner's recommendations							
Indicative values	country's monitoring		e indicative values, a	as measured	l by your			
	Parameter Nitrate- N	Indicative value Spring : average 3µ Summer: average 4						
	Ammonia-N	<i>Spring:</i> 8µg/l, ma <i>Summer:</i> 7µg/l, m						

SOUTH EUROPEAN SEAS

	Nitrite-N	<i>Spring:</i> 2µg/l, max 3µg/l					
		Summer: 2µg/l, max 4µg/l					
	Phosphate-P	<i>Spring:</i> 4µg/l, max 5µg/l <i>Summer:</i> 3µg/l, max 26µg/l					
	Organic Carbon in sediments	0.85%, max 1.8%					
Method							
	Parameter	Method used					
	Nitrate- N	Koroleff photometric method with <i>Cd</i> reduction (NO3-N to NO2-N) (Grasshoff, 1989)					
	Ammonia-N	Indophenol (Koroleff) photometric method using Trione					
	Nitrite-N	photometric method with 1-naphtil-ethilenediamine (Grasshoff, 1989)					
	Phosphate-P	Molibdate photometric method (Grasshoff, 1989)					
	Organic carbon	Photometric method after oxidation with K ₂ Cr ₂ O ₇					
Scales to assess GES	For each parameter, plea towards GES, if any.	se state the predefined scale that is used to assess progress					
	The upper limit given above is the threshold value between good/moderate which is the target value						

SOUTH EUROPEAN SEAS

FACTSHEET 2: Eutrophication - Phytoplankton

Descriptor	D5 Eutrophication							
Indicator	Phytoplankton							
Parameters	The parameters for nutrients include chlorophyll a, primary production, microalgae and phytoplankton. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).							
	Parameter	Background	Upper Limit	Unit	Monitoring			
		Level			Frequncy			
	Phytoplankton biomass (spring)	<2500	3500	mg/m ³	1-2			
	Phytoplankton biomass (summer)	<700	950	mg/m ³	1-3			
	Phytoplankton abundance (summer)	<500 000	800 000	cells/l	1-3			
	Chlorophyll a (spring)	<2.3	3.3	mg/m ³	1-3			
	Chlorophyll a (summer)	<0.9	1.5	mg/m ³	1-3			
	Biomass ratio Diatoms: Dinoflagellates (spring)	>8	6.3	N/A	1-2			
	Integrated phytoplankton Index (IBI)	>0.8	6.3	N/A	1-6			
Comments	Please state whether there	are areas where	the background l	evel is higher	or lower than			
regarding	that stated above				.1			
background and upper limits	Used summer values for t Bulgarian partner's recom		of the DeCyDe-4	-IRIS tool as j	per the			
Indicative	For each of the above par	1 0	ve indicative val	ues, as measur	red by your			
values	country's monitoring plan							
	Parameter	Indicative valu	e					
	Phytoplankton biomass (spring)	1001 – max 360	9					

SOUTH EUROPEAN SEAS

	Phytoplankton biomass (summer)	558 (average) – 2582 (max)				
	Phytoplankton abundance (summer)	710000 (average) – 1 822 000 (max)				
	Chlrorophyll a(spring)	2.9 (average) – 5.6 (max)				
	Chlorophyll a (summer)	3.1 (average) - 13.1 (max)				
	Biomass ratio Diatoms: Dinoflagellates (spring)	0.8 (average) – 0.3 (min)				
	Integrated phytoplankton Index (IBI)	0.50 (average) – 0.33 (min)				
Method	Please state the method us above values	sed for measuring for each parameter and determining the				
	Parameter	Method used				
	Phytoplankton biomass	Species specific geometric formula X abundance				
	Phytoplankton	Utermol (1938), inverted light microsope, Sedgwick-Rafter				
	abundance	цоунтинг chamber				
	Chlrorophyll a	Spectrophotometric method (acetone extraction, equations Jeffrey and Humphrey (1975)				
	Biomass ratio Diatoms: Dinoflagellates					
	Integrated phytoplankton Index (IBI)	Moncheva, Boicenko, 2011				
Scales to assess GES	For each parameter, please state the predefined scale that is used to assess progress towards GES, if any.					
		we is the threshold value between good/moderate which is the				

SOUTH EUROPEAN SEAS

IRIS SES

FACTSHEET 3: Eutrophication - Other

Descriptor	D5 Eutrophication										
Indicator	Other										
Parameters	The parameters for nutrients include secchi depth and dissolved oxygen concentration.In the table below, please add all the parameters that are being monitored AND for whichthere are available monitoring data. Add the most characteristic parameters for our regionfirst.For each of these parameters, please give the background level (the yearly averagenaturally occurring concentration) the upper limit (as set by national or Europeanlegislation), as well as the units that these are measured in, and the monitoring frequency(per year).ParameterBackgroundUpper LimitUnitMonitoring										
		Level	• FF ··		Frequency						
	Oxygen content and saturation in surface water	<i>Spring</i> : 110 <i>Summer</i> : 95- 105	<i>Spring:</i> 116 % <i>Summer:110</i> %	%	1-4						
	Oxygen saturation in bottom water	<i>Summer:</i> >85%	<i>Summer:</i> >75%	%	1-4						
	Secchi depth (spring)	7	4.5	m	1-2						
	Secchi depth (summer)	7	5.5	m	1-3						
Comments regarding background and upper limits	Please state whether ther that stated above Used summer values for partner's recommendation	the development	of the DeCyDe-4-	IRIS tool	as per the Bulgarian						
Indicative values	For each of the above pa country's monitoring pla	in in in its second sec		ies, as mea	asured by your						
	Parameter	Indicative valu									
	Oxygen saturation in surface waters	<i>Spring:</i> 119%, <i>Summer:</i> 111%									
	Oxygen saturation in	%, min 50%	•								

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

	bottom water		
	Secchi depth (spring)	4.5 – min 2.5	
	Secchi depth (summer)	5.0 – min 2.0	
Method	Please state the method used for measuring for each parameter and determining the above values		
	Parameter	Method used	
	Oxygen content and saturation	"Winkler" method (titration)	
Scales to assess GES	For each parameter, plea towards GES, if any.	se state the predefined scale that is used to assess progress	

SOUTH EUROPEAN SEAS

IRIS SES

FACTSHEET 4: Contaminants – In Water

Descriptor	D8/D9 Contaminants						
Indicator	In water						
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).						
	Parameter	Background	Upper Limit	Unit	Monitoring		
	Poly-aromatic hydrocarbons (PAH)	Level	Benzo(a)anthracene, Crizene, Fluorene- only annual mean concentration, not maximum (Regulation H-4/ BG/2012) Benzo(a)pyrene - 0.1µg/l, Anthracene-0.4 (Reg. for Envir.Quality stand./BG/2010)	µg/l	Frequency		
	Poly-chlorinated byphenyls (PCB)		Individual PCBs (PCB28, 52, 101, 138, 153, 180)-only annual mean concentration, not maximum (Regulation H-4/ BG/2012)	µg/l			
	Heavy metals (HM)		1.5 Cdμg/l, 14.0 Pbμg/l, 34.0 Niμg/l (MAC-EQS* Directive 2013/39/EU) Regulation for priority substances/BG/2010	μg/l			

SOUTH EUROPEAN SEAS

		Maximum content for				
		Cr=32 µg/l, As=25				
		μg/l (Regulation H-4				
		/BG/2012), Hg=0.07				
		(Reg. for				
		Envir.Quality				
		stand./BG/2010)				
Comments	Please state whether t	here are areas where the background level is higher or lower than				
regarding	that stated above					
background						
and upper						
limits						
	F hhhh	and the second				
Indicative		parameters please give indicative values, as measured by your				
values	country's monitoring					
	Parameter	Indicative value				
	Total Petroleum	136.7µg/l				
	Hydrocarbons					
	Poly-aromatic	\sum_{16} PAHs=0.914µg/l; CPAHs%=19.9 (the carcinogenic PAHs				
	hydrocarbons (PAH)	percentage)				
	Poly-chlorinated	Σ PCBs=0.039µg/l				
	byphenyls (PCB)					
	Organo-chlorine	$\Sigma OCPs = 0.033 \mu g/l$, HCB=0.009 $\mu g/l$, Sum DDT<0.0067 $\mu g/l$				
	Pesticides (OCP)					
	Heavy metals (HM)	0.12µg Cd/L, 2.38µgPb/L, 6.17µg Ni/L. 0.11µgCu/l, 2.36µgCr/l				
Method	Please state the metho	d used for measuring for each parameter and determining the above				
	values					
-	Parameter	Method used				
-	Total Petroleum	Fluorescence method				
-	Hydrocarbons Poly-aromatic	GC-MS HPLC				
	hydrocarbons (PAH)					
-	Poly-chlorinated	GC-ECD				
	byphenyls (PCB)					
-	Organo-chlorine	GC-ECD				
	Pesticides (OCP)					
	Heavy metals (HM)	GF-AAS				
		Flame-AAS				
		WDXRF				
		ICP-MS				
Scales to	For each parameter, p towards GES, if any.	lease state the predefined scale that is used to assess progress				

SOUTH EUROPEAN SEAS

IRISSES

The upper limit given above is the threshold value

FACTSHEET 5: Contaminants – In Sediment

Descriptor	D8/D9 Contaminan	ts				
Indicator	In sediment					
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).					
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency	
	Total Petroleum Hydrocarbons		ΣPAHs <250 according Traven classification(Traven <i>et al.</i> , 2008)	μg/kg dw	1	
	Heavy metals (HM)		"Dutch list" for sediments: 85 Pb, 35Ni , 36 Cu , 140 Zn mg/kg	mg/kg		
Comments regarding	Please state whether there are areas where the background level is higher or lower than that stated above					
background and upper limits						
Indicative values	For each of the above country's monitoring Parameter		ase give indicative values,	, as measur	red by your	
	Total Petroleum Hydrocarbons	133.3µg/g dry s	-			

SOUTH EUROPEAN SEAS

Poly-aromatic hydrocarbons (PAH)	\sum_{16} PAHs =112.7µg/kg dry weight, CPAHs% - the carcinogenic PAHs=57%
Poly-chlorinated	$\Sigma PCBs=93.02 \ \mu g/kg \ dry \ weight$, PCB52=82.98 $\mu g/kg \ dry \ weight$
Organo-chlorine Pesticides (OCP)	HCB 3.056, μg/kg dry weight, ΣOCPs 7.334 μg/kg dry weight
Total organic carbon (TOC)	0.82%
Heavy metals (HM)	0.059µgNi /g dry weight, 31.3µgZn /g dry weight, 18µgPb /g dry weight, 0.159µg Cu/g dry weight
Please state the meth values	od used for measuring for each parameter and determining the above
Parameter	Method used
Total Petroleum Hydrocarbons	Fluorescence method
Poly-aromatic hydrocarbons (PAH)	GC-MS HPLC
Poly-chlorinated byphenyls (PCB)	GC-ECD
Organo-chlorine Pesticides (OCP)	GC-ECD
Heavy metals (HM)	GF-AAS Flame-AAS WDXRF ICP-MS
	hydrocarbons (PAH) Poly-chlorinated byphenyls (PCB) Organo-chlorine Pesticides (OCP) Total organic carbon (TOC) Heavy metals (HM) Please state the meth values Parameter Total Petroleum Hydrocarbons Poly-aromatic hydrocarbons (PAH) Poly-chlorinated byphenyls (PCB) Organo-chlorine Pesticides (OCP)

SOUTH EUROPEAN SEAS

FACTSHEET 5: Contaminants – In Biota

Not sufficient info on upper limits so not included in self-assessment tool.

Descriptor	D8/D9 Contaminants					
Indicator	In biota					
Parameters	 The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticide etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbor and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturall occurring concentration) the upper limit (as set by national or European legislation), as we as the units that these are measured in, and the monitoring frequency (per year). 					
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency	
	Poly-aromatic hydrocarbons (PAH)		benzo[a]pyrene- 10 μg/kg ww Regulation (EC) №1881/2006 10 μg/kg ww according Regulation 31 (BG)-D9	µg/kg ww	Trequency	
	Poly-chlorinated byphenyls (PCB)		ΣPCBs = 75 ng/g ww (Σ-PCB 28, 52, 101, 138, 153, 180) for dioxins, dioxin-like PCBs (EC № 1259/2011 amending Regulation (EC) no. 1881/2006)	ng/g ww		
	Heavy metals (HM)		Regulation (EC) no. 1881/2006,	µg/kg ww		

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

		D9-Regulation №31/2004 (BG) for maximum pollutants content-1µg/kg ww in mussels (not clear if this is for total Heavy Metals and partner not able to confirm)			
Comments regarding background and upper limits	Please state whether th stated above	ere are areas where the background level is higher or lower than that			
Indicative values	For each of the above parameters please give indicative values, as measured by your country's monitoring plan Parameter Indicative value Total Petroleum				
	Hydrocarbons Poly-aromatic hydrocarbons (PAH) Poly-chlorinated byphenyls (PCB) Organo-chlorine Pesticides (OCP)	 Σ₁₆PAHs μg/kg dry weight tissue: Scapharca – 2561, Mytilus galloprovincialis- 650, Rapana venosa-3208 ΣPCBs (μg/kg dry weight tissue) in: Scapharca – 7.4, Mytilus galloprovincialis- 5.9, Rapana venosa- 22.2 ΣOCPs (μg/kg dry weight tissue) in: Scapharca – 17.4, Mytilus galloprovincialis- 30.2, Rapana venosa- 5.2 			
	Heavy metals (HM)	 HCB: 0.5ng/g dw in Mytilus galloprovincialis , Rapana venosa, Scapharca Rapana venosa- 4.76 μgCu/g wet weight, 5.4 Cd μg/g ww, 0.086Pb μg/g ww, 0.65Ni μg/g ww, 0.24Cr μg/g ww Scapharca – 2.03 μgCu/g wet weight, 2.47 Cd μg/g ww, 0.05Pb μg/g ww, 4.47Ni μg/g ww, 0.47Cr μg/g ww Mytilus galloprovincialis -4.48 μgCu/g wet weight, 0.84 Cd μg/g ww, 0.092Pb μg/g ww, 1.0Ni μg/g ww, 0.17Cr μg/g ww 			
Method	Please state the method values Parameter	I used for measuring for each parameter and determining the above			
	Total Petroleum Hydrocarbons	Fluorescence method			

IN THE

SOUTH EUROPEAN SEAS

	Poly-aromatic	GC-MS HPLC
	hydrocarbons (PAH)	
	Poly-chlorinated	GC-ECD
	byphenyls (PCB)	
	Organo-chlorine	GC-ECD
	Pesticides (OCP)	
	Total organic carbon	
	(TOC)	
	Heavy metals (HM)	GF-AAS
		Flame-AAS
		WDXRF
		ICP-MS
Scales to	For each parameter, ple	ase state the predefined scale that is used to assess progress towards
assess GES	GES, if any.	r
	, ··· J·	

SOUTH EUROPEAN SEAS

ACTIVITY 3: SELF-ASSESSMENT TOOL FOR ASSESSING GES FOR EUTROPHICATION AND CONTAMINANTS

Country	ROMANIA
Region	Black Sea
Neighboring	Mediterranean Sea
Regions	
Partner	National Institute for Marine and Research Development "Grigore
	Antipa", NIMRD

SOUTH EUROPEAN SEAS

FACTSHEET 1: Eutrophication - Nutrients

Descriptor	D5 Eutrophication						
Indicator	Nutrients						
Parameters	The parameters for nutrients include nitrogen and phosphorus compounds, ammonia and sediment organic matter. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).						
	Parameter	Background Level <mark>Reference</mark> conditions	Upper Limit	Unit	Monitoring Frequency		
	Dissolved Inorganic Phosphorus (orto- phopshate), DIP	Transitional waters – 0.30μM Coastal waters – 0.20μM Marine waters – 0.15μM	Marine Waters – 0.23µM	μМ	4 times/year		
	Dissolved Inorganic Nitrogen (sum of NOx and ammonium), DIN	Transitional waters – 25.0μM Coastal waters – 9.0μM Marine waters – 7.0μM	Marine Waters – 10.50 μM	μМ	4 times/year		
Comments regarding background and upper limits	Please state whether there that stated above As stated in the table, ma transitional bodies.	e are areas where t					
Indicative values	For each of the above par country's monitoring plan Parameter	<u>1</u>	ve indicative values e <mark>(IA 2006-2012)</mark>	, as measu	red by your		
	DIP	0,01- 16,50 µM 0,96µM)	(average 0,31 μM,	median 0,	15 μM, stdev.		

SOUTH EUROPEAN SEAS

		Average summer 2013 for marine waters: 0.26 µM			
	DIN	1,14 - 160,04 μM (average 10,21 μM, median 6,70 μM, stdev. 13,24 μM)			
		Average summer 2013 for marine waters: 8.95 μM			
Method	Please state the method us above values	sed for measuring for each parameter and determining the			
	Parameter	Method used			
	Phosphate, PO ₄ ³⁻	Spectrophotometric, Grasshoff et al., 1999			
	Nitrite, NO ₂ ⁻	Spectrophotometric, Grasshoff et al., 1999			
	Nitrate, NO ₃	Spectrophotometric, homogenous reduction with hydrazine sulphate, (Mullin and Riley, 1955; Strickland and Parsons, 1960)			
	Ammonium, NH ₄ ⁺	Spectrophotometric, Grasshoff et al., 1999			
Scales to assess GES	For each parameter, please state the predefined scale that is used to assess progress towards GES, if any.				
	GES is assessed based on target values (reference values + Acceptable deviation in each water body: 75 th percentile of annual mean concentrations of nutrients DIN) not less than target values in marine waters.				

SOUTH EUROPEAN SEAS

FACTSHEET 2: Eutrophication - Phytoplankton

Descriptor	D5 Eutrophication						
Indicator	Phytoplankton						
Parameters	The parameters for nutrients include chlorophyll a, primary production, microalgae and phytoplankton. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequenc (per year).						
	Parameter	Background Level Reference conditions (summer season)	Upper Limit	Unit	Monitoring Frequency		
	Chlorophyll a	Transitional waters – 3.90µg/L Coastal waters – 2.05µg/L Marine waters – 2.00µg/L	Marine Waters – 3.08 µg/L	μg/L	4 times/year		
	Phytoplankton Biomass	Transitional waters – 427.08 mg/m3 Coastal waters – 191.16 mg/m3 Marine waters – 551.89 mg/m3	Marine Waters – 828 mg/m3	mg/m3	4 times/year		
Comments regarding background and upper limits	Please state whether there that stated above The reference values are of spring season characterize background values could	e are areas where t calculated based o ed by high phytop	n summer seaso	n values. Cor	npared with		
Indicative	For each of the above part	ameters please giv	e indicative valu	ues, as measu	ired by your		

SOUTH EUROPEAN SEAS

values	country's monitoring plan	
	Parameter	Indicative value (for summer 2013)
	Chlorophyll a	0.20 - 17.97 μg/L (average 2.81 μg/L, median 2.33 μg/L,
		stdev. 3.36 µg/L)
		Average summer 2013 for marine waters: 0.99 μg/L
	Phytoplankton biomass	139.37 - 11669.44 mg/m3 (average 783.17 mg/m3, median
		344.67 mg/m3, stdev. 2034.78 mg/m3)
		Average summer 2013 for marine waters: 288.42 mg/m3
Method	Please state the method used for measuring for each parameter and determining the	
	above values	
	Parameter	Method used
	Chlorophyll a	SCOR-UNESCO, 1966. Determinations of photosynthetic
		pigments in seawater. Monographs on Oceanographic
		Methodology 1: 11-18.
	Phytoplankton biomass	Moncheva S., B. Parr. 2010. Manual for Phytoplankton
		Sampling and Analysis in the Black Sea. Black Sea
		Commission.
Scales to	For each parameter, please state the predefined scale that is used to assess progress	
assess GES	towards GES, if any.	
	GES based on chlorophyll a concentration: 90th percentile of summer chlorophyll a	
	concentrations decreasing trend based on routine monitoring.	

SOUTH EUROPEAN SEAS

FACTSHEET 3: Eutrophication - Other

Descriptor	D5 Eutrophication					
Indicator	Other					
Parameters	The parameters for nutrients include secchi depth and dissolved oxygen concentration. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).					
	Parameter Background Upper Unit Monitoring Level Limit Frequency Reference conditions Image: Conditions Image: Conditions					
	Transparency (Secchi depth)	Transitional waters – 3.0m Coastal waters – 7.5m Marine waters – 9m	Marine waters – 6.8m	m	4 times/year	
	Oxygen saturation	80%	60%	%	4 times/year	
Comments regarding background and upper limits	Please state whether there that stated above As stated in the table, man transitional bodies.					
Indicative values	For each of the above par country's monitoring plar	· ·	e indicative v	alues, as me	easured by your	
	Parameter	Indicative value	e <mark>(for year 2</mark> 0	<mark>13)</mark>		
	Transparency (Secchi depth)	0,8 – 12,5m (ave Average summe			stdev. 2.1m).	
	Oxygen saturation	45.7-141.3% (av	verage 105.3%	6, median 10	7.4%, stdev.	
		21.2%, percentil		·		
Method Please state the method used for measuring for each parameter and determ above values						
	Parameter	Method used				
	Transparency (Secchi depth)	Secchi disc				
	Oxygen saturation	Winkle method	and calculation	on according	IOCtables.	

Scales to	For each parameter, please state the predefined scale that is used to assess progress
assess GES	towards GES, if any.
	GES is assessed based on target values (reference values - Acceptable deviation 25%) in
	each water body: 95 th percentile of transparency values should be more than the target
	values; 95 th percentile of bottom oxygen saturation (up to 50m due to the anoxic natural
	features of the Black Sea) values should be more than the target values.

SOUTH EUROPEAN SEAS

FACTSHEET 4: Contaminants – In Water

Descriptor	D8/D9 Contaminants								
Indicator	PAHs in water								
Parameters	pesticides etc), non-synthetic s petroleum hydrocarbons and r In the table below, please add which there are available mon for our region first. For each of these parameters, p naturally occurring concentrat	The parameters for contaminants include synthetic substances (e.g. PAHs , PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring							
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency				
	Polyaromatic hydrocarbons (Σ_{16} PAH):	-	-		twice per year				
	1.Naphtalene	-	130	μg/L	twice per year				
	2.Acenaphthylene	-	-	μg/L	twice per year				
	3.Acenaphthene	-	-	μg/L	twice per year				
	4.Fluorene	-	-	μg/L	twice per year				
	5.Phenanthrene	-	-	μg/L	twice per year				
	6.Anthracene	-	0,100	μg/L	twice per year				
	7.Fluoranthene	-	0,120	μg/L	twice per year				
	8.Pyrene	-	-	μg/L	twice per year				
	9.Benzo[a]anthracene	-	-	μg/L	twice per year				
	10.Crysene	-	-	μg/L	twice per year				
	11.Benzo[b]fluoranthene	-	0,017	μg/L	twice per year				
	12.Benzo[k]fluoranthene	-	0,017	μg/L	twice per year				
	13.Benzo[a]pyrene	-	0,027	μg/L	twice per				

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

						year	
			_	8,2 × 10 ⁻⁴	μg/L	twice per	
	14.Benzo (g,h,i)perylene			- , -	13	year	
			-	-	μg/L	twice per	
	15.Dibenzo(a,h)anthracene	;			/1	year	
	16.Indeno(1,2,3-c,d)pyrene	2	-	-	μg/L	twice per	
	Total petroleum		50	200	μg/L	year twice per	
	hydrocarbons (TPH)		00	200	48 E	year	
						5	
Comments	Please state whether there a	are a	reas where the	background lev	vel is higł	ner or lower	
regarding	than that stated above						
background and upper limits							
Indicative values	For each of the above paraget	rameters please give indicative values, as measured by you					
	country's monitoring plan						
	Parameter	Indicative value					
	Naphtalene	Range: DL- 10.153 (µg/L); Average: 0.7218 (µg/L)				218 (µg/L)	
	Anthracene	Range: DL-15.075 (µg/L); Average: 0.8852 (µg				352 (μg/L)	
	Fluoranthene	Range: DL- 6.885 (µg/L); Average: 0.0914(µg/				914(µg/L)	
	Benzo[b]fluoranthene	Ra	nge: DL- 0.195	6 (μ g/L); Aver	rage: 0.01	61(µg/L)	
	Benzo[k]fluoranthene	Ra	nge: DL- 0.148	9 (µg/L); Aver	rage: 0.02	207(µg/L)	
	Benzo[a]pyrene	Ra	nge: DL- 0.358	8 (μ g/L); Aver	rage: 0.02	.0280(µg/L)	
	Benzo (g,h,i)perylene	Ra	nge: DL- 0.205	$0 (\mu g/L);$ Aver	rage: 0.01	64(μg/L)	
	Total petroleum hydrocarbons (TPH	Ra	inge: DL- 998.0) (µg/L); Avei	rage: 215	5.9(μg/L)	
Method	Please state the method use	ed fo	or measuring for	each paramete	er and det	ermining the	
	above values						
	Parameter		ethod used				
	Naphtalene	-	s chromatograp				
	Acenaphthylene	-	s chromatograp				
	Acenaphthene	•	s chromatograp	, I	• `	,	
	Fluorene	-	s chromatograp			·	
	Phenanthrene	gas	s chromatograp	hy-mass spectre	ometry (C	GC-MS)	
	Anthracene	gas	s chromatograp	hy-mass spectr	ometry (C	GC-MS)	
	Fluoranthene	•	s chromatograp	, I		<i>,</i>	
	Pyrene	•	s chromatograp	, I	• `	,	
	Benzo[a]anthracene	gas	s chromatograp	hy-mass spectr	ometry (C	GC-MS)	
	Crysene	gas	s chromatograp	hy-mass spectr	ometry (C	GC-MS)	

SOUTH EUROPEAN SEAS

	Benzo[b]fluoranthene	gas chromatography-mass spectrometry (GC-MS)		
	Benzo[k]fluoranthene	gas chromatography-mass spectrometry (GC-MS)		
	Benzo[a]pyrene	gas chromatography-mass spectrometry (GC-MS)		
	Benzo (g,h,i)perylene	gas chromatography-mass spectrometry (GC-MS)		
	Dibenzo(a,h)anthracene	gas chromatography-mass spectrometry (GC-MS)		
	Indeno(1,2,3-c,d)pyrene	gas chromatography-mass spectrometry (GC-MS)		
	Total petroleum	Fluorescent method		
	hydrocarbons (TPH)			
Scales to assess	For each parameter, please	state the predefined scale that is used to assess progress		
GES	towards GES, if any.			

Descriptor	D8/D9 Contaminants				
Indicator	PCBs in water				
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).				
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency
	Lindane (gamma HCH)	zero	0.020 (refers to HCH, not only to gamma HCH)	µg/L	twice per year
	НСВ	zero	0.050	μg/L	twice per year
	p,p' DDE	zero	0.025 (refers to	μg/L	twice per year
	p,p' DDD	zero	Sum DDT, DDE, DDD)	μg/L	twice per year
	p,p' DDT	zero	0.01	μg/L	twice per year
	Aldrine	zero	0.005	μg/L	twice per year
	Dieldrin	zero	(refers to Sum Cyclodiene	μg/L	twice per year
	Endrin	zero	Cyclouiche	μg/L	twice per year
	Heptachlor	zero	0.00003 (refers	μg/L	twice per year

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

	PCB 52	7070	to heptachlor and heptachlor epoxide)		twice per veer	
		zero	-	μg/L	twice per year	
	PCB 138	zero	-	µg/L	twice per year	
	PCB 28	zero	-	μg/L	twice per year	
	PCB101	zero	-	μg/L	twice per year	
	PCB 118	zero	-	μg/L	twice per year	
	PCB 153	zero	-	μg/L	twice per year	
	PCB180	zero	-	μg/L	twice per year	
Comments regarding background and upper limits	Please state whether there that stated above Compared to" Upper Lim for lindane, the amount DDT (DDT and metabol Vama Veche	it" (Directive 20 of cyclodienes)13_39_EU) there a (aldrin, dieldrin, e	are frequ ndrin) a	ently exceedances nd the amount of	
Indicative values	For each of the above para country's monitoring plan Parameter			es, as me	easured by your	
	Lindane (gamma HCH)	DL - 0.51				
	HCB	DL - 0.33				
	p,p' DDE	DL - 0.16				
	p,p' DDT	DL - 0.16				
	Aldrine	DL - 0.11				
	Dieldrin	DL - 0.09				
	Heptachlor	DL - 0.06				
	p,p' DDD	DL - 0.04				
	Endrin	DL - 0.03				
	PCB 52	DL - 0.4				
	PCB 153	DL = 0.003				
	PCB 118	DL = 0.003				
	PCB 101	DL - 0.0004				
	PCB138	DL - 0.0008				
	PCB 28	DL				
	PCB180	DL				

Method	Please state the method us above values	sed for measuring for each parameter and determining the
	Parameter	Method used
	Lindane (gamma HCH)	GC-ECD
	НСВ	GC-ECD
	p,p' DDE	GC-ECD
	p,p' DDT	GC-ECD
	Aldrine	GC-ECD
	Dieldrin	GC-ECD
	Heptachlor	GC-ECD
	p,p' DDD	GC-ECD
	Endrin	GC-ECD
	PCB 52	GC-ECD
	PCB 153	GC-ECD
	PCB 118	GC-ECD
	PCB 101	GC-ECD
	PCB138	GC-ECD
	PCB 28	GC-ECD
	PCB180	GC-ECD
Scales to assess GES	For each parameter, pleas towards GES, if any.	e state the predefined scale that is used to assess progress

Descriptor	D8/D9 Contaminants
Indicator	Heavy Metals in water
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs,
	pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum
	hydrocarbons and radionuclides.
	In the table below, please add all the parameters that are being monitored AND for
	which there are available monitoring data. Add the most characteristic parameters for
	our region first.
	For each of these parameters, please give the background level (the yearly average
	naturally occurring concentration) the upper limit (as set by national or European
	legislation), as well as the units that these are measured in, and the monitoring frequency
	(per year).

	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency		
	Cu			μg/L	twice per year		
	Cd		1,50	μg/L	twice per year		
	Pb		14,00	μg/L	twice per year		
	Ni		34,00	µg/L	twice per year		
	Cr			µg/L	twice per year		
Comments regarding background and upper limits	Please state whether the that stated above						
Indicative values	For each of the above parameters please give indicative values, as measured by your country's monitoring plan						
	Parameter	Indicative value					
	Cu	0,18-8,36					
	Cd	0,40-9,12					
	Pb	1,13-8,61					
	Ni	0,81-22,78					
	Cr	0,28-5,10					
Method	Please state the method above values	used for measuring	for each para	meter and dete	ermining the		
	Parameter	Method used					
	Cu	GF-AAS					
	Cd	GF-AAS					
	Pb	GF-AAS					
	Ni	GF-AAS					
	Cr	GF-AAS					
Scales to assess GES	For each parameter, ple towards GES, if any.	ease state the predefi	ned scale that	is used to ass	ess progress		

SOUTH EUROPEAN SEAS

FACTSHEET 4: Contaminants – In Sediments

Descriptor	D8/D9 Contaminants							
Indicator	PAHs in sediment							
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs , PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).							
	Parameter	ParameterBackgroundUpperUnitMonitoringLevelLimitFrequency						
	Polyaromatic	116 5	1000.0		4			
	hydrocarbons (Σ ₁₆ PAH):	116.5	1000.0 160	μg/kg* μg/kg	twice per year twice per year			
	1.Naphtalene	4,9	44	μg/kg μg/kg	twice per year			
	2.Acenaphthylene	2,0	16	μg/kg μg/kg	twice per year			
	3.Acenaphthene	3,1	10		twice per year			
	4.Fluorene	4,2	240	µg/kg				
	5.Phenanthrene	29,5	85	µg/kg	twice per year			
	6.Anthracene	8,1	600	µg/kg	twice per year			
	7.Fluoranthene	5,0		µg/kg	twice per year			
	8.Pyrene	11,3	665	µg/kg	twice per year			
	9.Benzo[a]anthracene	0,5	261	µg/kg	twice per year			
	10.Crysene	1,8	384	µg/kg	twice per year			
	11.Benzo[b]fluoranthene	4,1	-	µg/kg	twice per year			
	12.Benzo[k]fluoranthene	2,7	-	µg/kg	twice per year			
	13.Benzo[a]pyrene	2,1	430	µg/kg	twice per year			
	14.Benzo (g,h,i)perylene	1,9	85	µg/kg	twice per year			
	15.Dibenzo(a,h)anthracene	1,7	63	µg/kg	twice per year			
	16.Indeno(1,2,3-c,d)pyrene	0,9	240	µg/kg	twice per year			
	Total petroleum hydrocarbons (TPH)	-			twice per year			

			100	µg/g					
				* dry					
				weight					
Comments regarding	Please state whether there ar that stated above	Please state whether there are areas where the background level is higher or lower than							
background									
and upper limits									
Indicative	For each of the above param	eters please give in	dicative va	lues, as meas	ured by your				
values	country's monitoring plan Parameter	Indicative value							
	Polyaromatic	Indicative value							
	hydrocarbons (Σ_{16} PAH):	Range: DL- 4 96	2 (µg/kg);	Average: 85	53.4 (µg/kg)				
	1.Naphtalene	Range: DL- 3 976							
	2.Acenaphthylene	Range: DL- 94.0 (µg/kg); Average: 8.9 (µg/kg)							
	3.Acenaphthene	Range: DL- 292.2 (µg/kg); Average: 10.2 (µg/kg)							
	4.Fluorene	Range: DL- 976.0 (µg/kg); Average: 41.6 (µg/kg)							
	5.Phenanthrene	Range: DL- 1919.5 (µg/kg); Average: 120.6 (µg/kg)							
	6.Anthracene	Average: 14	7.1 (µg/kg)						
	7.Fluoranthene	Range: DL- 2 294.4 (µg/kg); Average: 112.4 (µg/kg)							
	8.Pyrene	Range: DL- 2 286.0 (µg/kg); Average: 91.6 (µg/kg)							
	9.Benzo[a]anthracene	Range: DL- 387.7	' (µg/kg); A	Average: 26.8	(µg/kg)				
	10.Crysene	Range: DL- 890.0) (µg/kg); A	Average: 23.8	(µg/kg)				
	11.Benzo[b]fluoranthene	Range: DL- 255.1	(µg/kg); A	Average: 17.9	(µg/kg)				
	12.Benzo[k]fluoranthene	Range: DL- 96.1	$(\mu g/kg); A$	verage: 10.0 ((µg/kg)				
	13.Benzo[a]pyrene	Range: DL- 560.0) (µg/kg); A	Average: 42.8	(µg/kg)				
	14.Benzo (g,h,i)perylene	Range: DL- 340.1	(µg/kg); A	Average: 16.9	(µg/kg)				
	15.Dibenzo(a,h)anthracene	Range: DL- 269.8	8 (μg/kg); A	Average: 8.9	(µg/kg)				
	16.Indeno(1,2,3- c,d)pyrene	Range: DL- 706.1	(µg/kg); A	Average: 26.4	(µg/kg)				
	Total petroleum								
	hydrocarbons (TPH)	Range: DL- 728.	9 (μg/g); A	verage: 127.	.8 (μg/g)				
Method	Please state the method used values	for measuring for	each param	eter and deter	rmining the above				

SOUTH EUROPEAN SEAS

	Parameter	Method used
	1.Naphtalene	gas chromatography-mass spectrometry (GC-MS)
	2.Acenaphthylene	gas chromatography-mass spectrometry (GC-MS)
	3.Acenaphthene	gas chromatography-mass spectrometry (GC-MS)
	4.Fluorene	gas chromatography-mass spectrometry (GC-MS)
	5.Phenanthrene	gas chromatography-mass spectrometry (GC-MS)
	6.Anthracene	gas chromatography-mass spectrometry (GC-MS)
	7.Fluoranthene	gas chromatography-mass spectrometry (GC-MS)
	8.Pyrene	gas chromatography-mass spectrometry (GC-MS)
	9.Benzo[a]anthracene	gas chromatography-mass spectrometry (GC-MS)
	10.Crysene	gas chromatography-mass spectrometry (GC-MS)
	11.Benzo[b]fluoranthene	gas chromatography-mass spectrometry (GC-MS)
	12.Benzo[k]fluoranthene	gas chromatography-mass spectrometry (GC-MS)
	13.Benzo[a]pyrene	gas chromatography-mass spectrometry (GC-MS)
	14.Benzo (g,h,i)perylene	gas chromatography-mass spectrometry (GC-MS)
	15.Dibenzo(a,h)anthracene	gas chromatography-mass spectrometry (GC-MS)
	16.Indeno(1,2,3-	gas chromatography-mass spectrometry (GC-MS)
	c,d)pyrene Total petroleum	Fluorescent method
	hydrocarbons (TPH	
Scales to assess GES		tate the predefined scale that is used to assess progress

Descriptor	D8/D9 Contaminants		D8/D9 Contaminants					
Indicator	PCBs in sediment							
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs,							
	pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum							
	hydrocarbons and radionuclides.							
	In the table below, please add all the parameters that are being monitored AND for							
	which there are available monitoring data. Add the most characteristic parameters for							
	our region first.							
	For each of these parameters, please give the background level (the yearly average							
	naturally occurring concentration) the upper limit (as set by national or European							
	legislation), as well as the units that these are measured in, and the monitoring frequency							
	(per year).							
	Parameter	Background	Upper	Unit	Monitoring			

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

		Level	Limit		Frequency		
	p,p' DDD	zero	-	µg/kg dry weight	twice per year		
	p,p' DDT	zero	-	µg/kg dry weight	twice per year		
	p,p' DDE	zero	2.2	µg/kg dry weight	twice per year		
	Aldrine	zero	-	µg/kg dry weight	twice per year		
	Heptachlor	zero	-	µg/kg dry weight	twice per year		
	Lindane (gamma HCH)	zero	3.0	µg/kg dry weight	twice per year		
	Dieldrin	zero	2.0	µg/kg dry weight	twice per year		
	Endrin	zero	-	µg/kg dry weight	twice per year		
	НСВ	zero	20.0	µg/kg dry weight	twice per year		
	PCB 28	zero	1.7	µg/kg dry weight	twice per year		
	PCB 52	zero	2.7	µg/kg dry weight	twice per year		
	PCB 153	zero	40	µg/kg dry weight	twice per year		
	PCB 138	zero	7.9	µg/kg dry weight	twice per year		
	PCB 101	zero	3.0	µg/kg dry weight	twice per year		
	PCB 118	zero	0.6	µg/kg dry weight	twice per year		
	PCB 180	zero	12	µg/kg dry weight	twice per year		
Comments regarding	Please state whether there that stated above	are areas where	the backs	ground level is higher	or lower than		
background and upper limits							
Indicative values	For each of the above para country's monitoring plan		ive indica	tive values, as measu	red by your		
	Parameter	Indicative value					
	p,p' DDD	DL - 87					
	p,p' DDT	DL - 56					
	p,p' DDE	DL - 39					
	Aldrine	DL - 90					
	Heptachlor	DL - 60					
	Lindane (gamma HCH)	DL - 38					
	Dieldrin	DL – 13					
	Endrin	DL - 13					
	НСВ	DL - 5					
	PCB 28	DL - 80					

	PCB 52	DL - 48		
	PCB 153	DL - 30		
	PCB 138	DL - 30		
	PCB 101	DL - 20		
	PCB 118	DL -10		
	PCB180	DL -6		
Method	Parameter	Method used		
	p,p' DDD	GC-ECD		
	p,p' DDT	GC-ECD		
	p,p' DDE	GC-ECD		
	Aldrine	GC-ECD		
	Heptachlor	GC-ECD		
	Lindane (gamma HCH)	GC-ECD		
	Dieldrin	GC-ECD		
	Endrin	GC-ECD		
	НСВ	GC-ECD		
	PCB 28	GC-ECD		
	PCB 52	GC-ECD		
	PCB 153	GC-ECD		
	PCB 138	GC-ECD		
	PCB 101	GC-ECD		
	PCB 118	GC-ECD		
	PCB180	GC-ECD		
Scales to assess GES	For each parameter, please state the predefined scale that is used to assess progress towards GES, if any.			

Descriptor	D8/D9 Contaminants
Indicator	Heavy metals in sediment
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs,
	pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum
	hydrocarbons and radionuclides.
	In the table below, please add all the parameters that are being monitored <u>AND</u> for
	which there are available monitoring data. Add the most characteristic parameters for
	our region first.
	For each of these parameters, please give the background level (the yearly average

	(per year).	as the units that these		-				
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency			
	Cu		40	µg∕g dw	twice per year			
	Cd		1.2	µg/g dw	twice per year			
	Pb		47	µg/g dw	twice per year			
	Ni		35	µg/g dw	twice per year			
	Cr		81	µg∕g dw	twice per year			
Comments regarding background	Please state whethe that stated above	r there are areas where	the backgrou	nd level is hig	her or lower than			
and upper limits				1				
Indicative values	For each of the abo country's monitorir	ve parameters please gi	ve indicative	values, as mea	asured by your			
values	Parameter							
	Cu	26.85						
	Cd	0.69	0.69					
	Pb	14.75	14.75					
	Ni	38.75	38.75					
	Cr	34.22	34.22					
Method	Please state the method used for measuring for each parameter and determining the above values							
	Parameter	Method used						
	Cu	GF-AAS						
	Cd	GF-AAS						
	Pb	GF-AAS						
	Ni	GF-AAS	GF-AAS					
	Cr	GF-AAS						
Scales to assess GES	For each parameter towards GES, if any	, please state the predet y.	fined scale the	at is used to as	sess progress			

SOUTH EUROPEAN SEAS

FACTSHEET 5: Contaminants – In Biota

Descriptor	D8/D9 Contaminants				
Indicator	PAHs in biota				
Parameters	The parameters for contaminant pesticides etc), non-synthetic su hydrocarbons and radionuclides In the table below, please add al there are available monitoring d region first. For each of these parameters, pl naturally occurring concentration legislation), as well as the units (per year).	etals such as Cu that are being r st characteristic ckground level it (as set by nati	i, Cd, Hg etc nonitored <u>A</u> parameters (the yearly a ional or Euro the monitori), petroleum <u>ND</u> for which for our verage opean	
	Parameter	Background	Upper	Unit	Monitoring
		Level	Limit		Frequency
			Fish- Bivalve		
			molluscs		
	Polyaromatic	-	-		
	hydrocarbons (Σ ₁₆ PAH):				
	1.Naphtalene	-	-		
	2.Acenaphthylene	-	-		
	3.Acenaphthene	-	-		
	4.Fluorene	-	-		
	5.Phenanthrene	-	-		
	6.Anthracene	-	-		
	7.Fluoranthene	-	-		
	8.Pyrene	-	-		
	9.Benzo[a]anthracene	-	-		
	10.Crysene	-	-		
	11.Benzo[b]fluoranthene	-	-		
	12.Benzo[k]fluoranthene	-	-		

 $\textcircled{\bullet}$

IN THE

assess GES	towards GES, if any.	state the predefined scale that is used to assess progress				
Scales to	Benzo[a]pyrene For each parameter please st	gas chromatography-mass spectrometry (GC-MS)			<i>,</i>	
	Parameter	Method used				
Method	Please state the method used for measuring for each parameter and determining the above values					
	Benzo[a]pyrene					
	Parameter	Indicative value				
Indicative values	For each of the above parameters please give indicative values, as measured by your country's monitoring plan					
background and upper limits						
regarding	that stated above		8	8		
Comments	Please state whether there are	e areas where the b	ackground level	U	lower than	
				*wet weight		
	16.Indeno(1,2,3-c,d)pyrene	-	-			
	15.Dibenzo(a,h)anthracene	-	-			
	14.Benzo (g,h,i)perylene	-	-			
	13.Benzo[a]pyrene		molluses: 10			
			Fish: 2 Bivalve	µg/kg*		

Descriptor	D8 Contaminant	S			
Indicator	PCBs in biota (both fish and bivalve molluscs)				
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum bydrogerbons and radionuclides				
	 hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year). 				
	ParameterBackgroundUpperUnitMonitoring				
		Level	Limit		Frequency
	p,p' DDE	Zero	-	µg/kg dry weight	once per year

SOUTH EUROPEAN SEAS

p,p' DDDzero-µg/kg dry weightonce per yrDieldrinzero-µg/kg dry weightonce per yrAldrinezero-µg/kg dry weightonce per yrHeptachlorzero-µg/kg dry weightonce per yrLindanezero-µg/kg dry weightonce per yrp,p' DDTzero-µg/kg dry weightonce per yrEndrinzero-µg/kg dry weightonce per yrPCB22zero-µg/kg dry weightonce per yrPCB 52zero5.4µg/kg dry weightonce per yrPCB 118zero1.2µg/kg dry weightonce per yrPCB 101zero6.0µg/kg dry weightonce per yrPCB 138zero15.8µg/kg dry weightonce per yrPCB 180zero24µg/kg dry weightonce per yrPCB 180zero1.2µg/kg dry weightonce per yrPCB 180zero24µg/kg dry weightonce per yrPCB 180zero24µg/kg dry weightonce per yrDi 100pc 28PCB 101, PCB 118, PCB 138. There are or 'Upper Linfor HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin,	ear ear ear ear
Aldrinezero-µg/kg dry weightonce per yHeptachlorzero-µg/kg dry weightonce per yLindanezero-µg/kg dry weightonce per yp,p' DDTzero-µg/kg dry weightonce per yEndrinzero-µg/kg dry weightonce per yPCB2zero5.4µg/kg dry weightonce per yPCB 52zero5.4µg/kg dry weightonce per yPCB 118zero1.2µg/kg dry weightonce per yPCB 101zero6.0µg/kg dry weightonce per yPCB 138zero15.8µg/kg dry weightonce per yPCB 153zero8.0µg/kg dry weightonce per yPCB 28zero3.2µg/kg dry weightonce per yPCB 180zero24µg/kg dry weightonce per yPCB 180zero1.0PCB 138There are no "Upper Limit"and upperinfor PCB 28, PCB 101, PCB 118, PCB 138. There are on "Upper Limitfor HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE an DDT in biota.Indicativep,p' DDEDL - 600p,p' DDEp,p' DDEp,p' DDDDL - 800 <td< th=""><td>ear ear ear</td></td<>	ear ear ear
Lindanezero-µg/kg dry weightonce per yrp,p' DDTzero-µg/kg dry weightonce per yrEndrinzero-µg/kg dry weightonce per yrHCBzero-µg/kg dry weightonce per yrPCB 52zero5.4µg/kg dry weightonce per yrPCB 118zero1.2µg/kg dry weightonce per yrPCB 101zero6.0µg/kg dry weightonce per yrPCB 138zero15.8µg/kg dry weightonce per yrPCB 153zero80µg/kg dry weightonce per yrPCB 180zero3.2µg/kg dry weightonce per yrPCB 180zero24µg/kg dry weightonce per yrDT in biota.Dipper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limfor HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p.p' DDD, p.p' DDE anDDT in biota.DDT in biota.ParameterIndicative valuep.p' DDEDL - 600p.p' DDDp.p' DDDDL - 800DieldrinDL - 167	ear
p,p' DDTzero- $\mu g/kg dry weight$ once per yEndrinzero- $\mu g/kg dry weight$ once per yHCBzero- $\mu g/kg dry weight$ once per yPCB 52zero5.4 $\mu g/kg dry weight$ once per yPCB 118zero1.2 $\mu g/kg dry weight$ once per yPCB 101zero6.0 $\mu g/kg dry weight$ once per yPCB 138zero15.8 $\mu g/kg dry weight$ once per yPCB 153zero80 $\mu g/kg dry weight$ once per yPCB 180zero3.2 $\mu g/kg dry weight$ once per yPCB 180zero24 $\mu g/kg dry weight$ once per yDDT in biota.Please state whether there are areas where the background level is higher or lower tthat stated aboveCompared to" Upper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Linfor HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE anDDT in biota.Indicative valuesFor each of the above parameters please give indicative values, as measured by youvaluesp,p' DDEDL - 600p,p' DDDDL - 800DieldrinDL - 16	
Endrinzero-µg/kg dry weightonce per yHCBzero-µg/kg dry weightonce per yPCB 52zero5.4µg/kg dry weightonce per yPCB 118zero1.2µg/kg dry weightonce per yPCB 101zero6.0µg/kg dry weightonce per yPCB 138zero15.8µg/kg dry weightonce per yPCB 153zero80µg/kg dry weightonce per yPCB 180zero3.2µg/kg dry weightonce per yPCB 180zero24µg/kg dry weightonce per yPCB 180zero1.1µg/kg dry weightonce per yPCB 180zero24µg/kg dry weightonce per yPCB 180zero1.2µg/kg dry weightonce per yPCB 180zero1.2µg/kg dry weightonce per yPCB 180zero1.4µg/kg dry weightonce per yPCB 180zero1.2µg/kg dry weightonce per yPCB 180zero1.4µg/kg dry weightonce per yPCB 180zero1.4µg/kg dry weightonce per yCompared to" Upper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limit" there ar	
HCBzero-µg/kg dry weightonce per yaPCB 52zero5.4µg/kg dry weightonce per yaPCB 118zero1.2µg/kg dry weightonce per yaPCB 101zero6.0µg/kg dry weightonce per yaPCB 138zero15.8µg/kg dry weightonce per yaPCB 153zero80µg/kg dry weightonce per yaPCB 180zero3.2µg/kg dry weightonce per yaPCB 180zero24µg/kg dry weightonce per yaPCB 180zero24µg/kg dry weightonce per yaPCB 180zero24µg/kg dry weightonce per yaPCB 180zero1.8Please state whether there are areas where the background level is higher or lower that stated aboveComments regarding background and upper limitsPlease state whether there are areas where the background level is higher or lower that stated aboveCompared to" Upper Limit" there are frequently exceedances for PCB 52 occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limit" for HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE an DDT in biota.Indicative valuesFor each of the above parameters please give indicative values, as measured by you country's monitoring planParameterIndicative value p,p' DDEp,p' DDDDL - 600 p,p' DDDpieldrinDL - 167	ear
PCB 52zero5.4µg/kg dry weightonce per yePCB 118zero1.2µg/kg dry weightonce per yePCB 101zero6.0µg/kg dry weightonce per yePCB 138zero15.8µg/kg dry weightonce per yePCB 153zero80µg/kg dry weightonce per yePCB 180zero3.2µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePCB 180zero1024µg/kg dry weightonce per yePCB 180zero10102000background and upper limitsPlease state whether there are areas where the background level is higher or lower that stated above00Compared to" Upper Limit" there are frequently exceedances for PCB 520000casionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limit" that stated above00valuesFor each of the above parameters please give indicative values, as measured by you country's monitoring planParameterIndicative valuep,p' DDEDL - 600p,p' DDDDL - 800DieldrinDL - 167	ear
PCB 118zero1.2µg/kg dry weightonce per yePCB 101zero6.0µg/kg dry weightonce per yePCB 138zero15.8µg/kg dry weightonce per yePCB 153zero80µg/kg dry weightonce per yePCB 180zero3.2µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePCB 180zero1.2µg/kg dry weightonce per yePCB 180zero1.2µg/kg dry weightonce per yePCB 180zero1.2µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePCB 180zero1.2µg/kg dry weightonce per yePCB 180zero1.2µg/kg dry weightonce per yeComments regarding background and upper limitsPlease state whether there are areas where the background level is higher or lower t that stated aboveCompared to?Upper Limit?' there are frequently exceedances for PCB 52 occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Lim for HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE ocuntry's monitoring planParameterIndicative value <td>ar</td>	ar
PCB 101zero6.0µg/kg dry weightonce per yePCB 138zero15.8µg/kg dry weightonce per yePCB 153zero80µg/kg dry weightonce per yePCB 28zero3.2µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePCB 180zero13.8Please state whether there are areas where the background level is higher or lower tthat stated aboveCompared to" Upper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limfor HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE anDDT in biota.ParameterIndicative y,p' DDEp,p' DDEDL - 600p,p' DDDDL - 800DieldrinDL - 167	ar
PCB 138zero15.8µg/kg dry weightonce per yePCB 153zero80µg/kg dry weightonce per yePCB 28zero3.2µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePcB 180zero15.8µg/kg dry weightonce per yePcB 180zero24µg/kg dry weightonce per yePcB 180zero24µg/kg dry weightonce per yePcB 180zero15.8µg/kg dry weightonce per yePcB 180zero24µg/kg dry weightonce per yePcB 180zero15.8µg/kg dry weightonce per yePcB 180zero16.8Per set set whether there are areas where the background level is higher or lower tthat stated aboveCompared to" Upper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limitfor HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE anDDT in biota.ParameterParameterIndicative valuep,p' DDDDL - 600p,p' DDDDL - 16	ar
PCB 153zero80µg/kg dry weightonce per yePCB 28zero3.2µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePcB 180veCompared to" Upper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limit" there are frequently exceedances for PCB 52occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Limit" there are frequently exceedances as measured by youvaluesFor each of the above parameters please give indicative values, as measured by youvaluesParameterIndicative valuep,p' DDEDL - 600p,p' DDDDL - 800DieldrinDL - 167	ear
PCB 28zero3.2µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePCB 180zero24µg/kg dry weightonce per yePease state whether there are areas where the background level is higher or lower t that stated abovePlease state whether there are areas where the background level is higher or lower t that stated aboveComments regarding background and upper limitsPlease state whether there are areas where the background level is higher or lower t that stated aboveCompared to?Upper Limit?' there are frequently exceedances for PCB 52 occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Lim for HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE an DDT in biota.Indicative valuesFor each of the above parameters please give indicative values, as measured by you country's monitoring planParameter p,p' DDE p,p' DDDDL - 600p,p' DDD DieldrinDL - 167	ear
PCB 180zero24µg/kg dry weightonce per yeComments regarding background and upper limitsPlease state whether there are areas where the background level is higher or lower t that stated aboveCompared to" Upper Limit" there are frequently exceedances for PCB 52 occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Lim for HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE an DDT in biota.Indicative valuesFor each of the above parameters please give indicative values, as measured by you country's monitoring planParameterIndicative valuep,p' DDEDL - 600p,p' DDDDL - 800DieldrinDL - 167	ear
Comments regarding background and upper limitsPlease state whether there are areas where the background level is higher or lower to that stated aboveCompared to" Upper Limit" there are frequently exceedances for PCB 52 occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Lim for HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE an DDT in biota.Indicative valuesFor each of the above parameters please give indicative values, as measured by you country's monitoring planParameterIndicative valuep,p' DDEDL - 600p,p' DDDDL - 800DieldrinDL - 167	ear
regarding background and upper limitsthat stated aboveCompared to" Upper Limit" there are frequently exceedances for PCB 52 occasionally for PCB 28, PCB 101, PCB 118, PCB 138. There are no "Upper Lim for HCB, Lindane, Heptachlor, Aldrin, Endrin, Endrin, p,p' DDD, p,p' DDE an DDT in biota.Indicative valuesFor each of the above parameters please give indicative values, as measured by you country's monitoring planParameterIndicative value p,p' DDEp,p' DDEDL - 600p,p' DDDDL - 800DieldrinDL - 167	
valuescountry's monitoring planParameterIndicative valuep,p' DDEDL - 600p,p' DDDDL - 800DieldrinDL - 167	and nit set
p,p' DDE DL - 600 p,p' DDD DL - 800 Dieldrin DL - 167	r
p,p' DDD DL - 800 Dieldrin DL - 167	
Dieldrin DL - 167	
Heptachlor DL - 145	
Lindane DL – 128	
p,p' DDT DL - 106	
Endrin DL - 70	
HCB DL - 35	
PCB 52 DL - 283	
PCB 118 DL - 144	
PCB 101 DL - 133	

SOUTH EUROPEAN SEAS

	PCB 138	DL - 80
	PCB 153	DL - 36
	PCB 28	DL - 16
	PCB 180	DL - 16
Method	Please state the method above values	d used for measuring for each parameter and determining the
	Parameter	Method used
	p,p' DDE	GC-ECD
	p,p' DDD	GC-ECD
	Dieldrin	GC-ECD
	Aldrine	GC-ECD
	Heptachlor	GC-ECD
	Lindane	GC-ECD
	p,p' DDT	GC-ECD
	Endrin	GC-ECD
	НСВ	GC-ECD
	PCB 52	GC-ECD
	PCB 118	GC-ECD
	PCB 101	GC-ECD
	PCB 138	GC-ECD
	PCB 153	GC-ECD
	PCB 28	GC-ECD
	PCB 180	GC-ECD
Scales to assess GES	For each parameter, pl towards GES, if any.	ease state the predefined scale that is used to assess progress

D8/D9 Contaminants
Heavy metals in biota
The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs,
pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum
hydrocarbons and radionuclides.
In the table below, please add all the parameters that are being monitored AND for
which there are available monitoring data. Add the most characteristic parameters for
our region first.
For each of these parameters, please give the background level (the yearly average

	(per year). Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency	
	Cu			µg/g dw	1-2 times/year	
	Cd		5,00 (mussels); 1,20 (fish)	μg/g dw	1-2 times/year	
	Pb		7,50 (mussels); 1,20 (fish)	µg/g dw	1-2 times/year	
	Ni			µg/g dw	1-2 times/year	
	Cr			µg/g dw	1-2 times/year	
Comments regarding background and upper limits	Please state whether that stated above	there are areas where	the background	level 1s h1gh	er or lower than	
Indicative values		For each of the above parameters please give indicative values, as measured by your country's monitoring plan				
	Parameter	Indicative val	Indicative value (mussels 2013 average data)			
	Cu	20.95	20.95			
	Cd	2.57	2.57			
	Pb	1.28				
	Pb Ni	1.28 8.20				
Method	Ni Cr	8.20 3.44 hod used for measurin	g for each param	eter and det	ermining the	
Method	Ni Cr Please state the meth	8.20 3.44	g for each param	eter and det	ermining the	
Method	Ni Cr Please state the meth above values	8.20 3.44 hod used for measurin	g for each param	eter and det	ermining the	
Method	Ni Cr Please state the methabove values Parameter	8.20 3.44 hod used for measurin Method used GF-AAS GF-AAS	g for each param	eter and det	ermining the	
Method	Ni Cr Please state the methabove values Parameter Cu	8.20 3.44 hod used for measurin Method used GF-AAS	g for each param	eter and det	ermining the	
Method	Ni Cr Please state the methabove values Parameter Cu Cd	8.20 3.44 hod used for measurin Method used GF-AAS GF-AAS	g for each param	eter and det	ermining the	
Method	Ni Cr Please state the methabove values Parameter Cu Cd Pb	8.20 3.44 hod used for measurin Method used GF-AAS GF-AAS GF-AAS	g for each param	eter and det	ermining the	

SOUTH EUROPEAN SEAS

ACTIVITY 3: SELF-ASSESSMENT TOOL FOR ASSESSING GES FOR EUTROPHICATION AND CONTAMINANTS

Country	Turkey
Region	Black Sea
Neighboring	Marmara Sea
Regions	
Partner	TUBITAK

SOUTH EUROPEAN SEAS

FACTSHEET 1: Eutrophication - Nutrients

Descriptor	D5 Eutrophication						
Indicator	Nutrients						
Parameters	The parameters for nutrients include nitrogen and phosphorus compounds, ammonia and sediment organic matter. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).						
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency		
	PO4_P	0,04	-	μM	Twice / year		
	NO3+NO2_N	-	μM	Twice / year			
	NH4_N - - μM Two SiO2 4,81 - μM Two						
	ТР	0,26	0,32*	μM	Twice / year		
Comments regarding background and upper limits	 Please state whether there are areas where the background level is higher or lower than that stated above Background values were obtained as average for open waters (>1 nm) of the western black sea, 0-10 m depths for winter period of 2008-2011. These values also change for western and eastern black sea and seasonally. Upper values are not defined for the above parameters for marine waters. *National legislation(2009): Oligotrophic conditions for the Black Sea . This legislation 						
	sets criteria for other trop						
Indicative values	For each of the above part country's monitoring plan		ve indicative values	s, as measu	red by your		
	Parameter	Indicative value	e				
	PO4_P	0.01-0.17 (min-1	max values for the	above peri	od and area)		
	NO3+NO2_N	0.04-4.94 (min-	max values for the	above per	iod and area)		
	NH4_N	-					

 $\textcircled{\bullet}$

IN THE

SOUTH EUROPEAN SEAS

IRIS SES

	SiO2	0.04-29.5 (min-max values for the above period and area)			
	ТР	0.08-0.78 (min-max values for the above period and area)			
Method	Please state the method u above values	sed for measuring for each parameter and determining the			
	Parameter	Method used			
	PO4_P	Colorimetric : Grasshoff et al. 1983, S.M. 4500-P : 2005 G			
	NO3+NO2_N	Colorimetric : Grasshoff et al. 1983, S.M. 4500-P : 2005 G			
	SiO2	SM 4500-SiO2 C 21. 2005			
	ТР	Persulfate oxidation- colorimetric : Grasshoff et al. 1983, S.M. 4500-P : 2005 G			
Scales to assess GES	For each parameter, pleas towards GES, if any.	se state the predefined scale that is used to assess progress			
	Initially 10percentil of data is excepted as reference value and the ref+50% dev the target value for GES.				

Ref to the Project:

TUBITAK-MRC and MoEU-GDEM (2014). Marine and Coastal Waters Quality Determination and Classification Project (DeKoS). ÇTÜE 5118703, Report No. ÇTÜE.13.155 (Final Report), February 2014, Gebze-Kocaeli, Turkey.

SOUTH EUROPEAN SEAS

FACTSHEET 2: Eutrophication - Phytoplankton

Descriptor	D5 Eutrophication					
Indicator	Phytoplankton					
Parameters	The parameters for nutrients include chlorophyll a, primary production, microalgae and phytoplankton. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).					
	Parameter	Background	Upper Limit	Unit	Monitoring	
	Chl-a	Level 0,95	1,00	µg/L	Frequncy Twice/year	
Comments regarding background and upper limits Indicative	Please state whether there are areas where the background level is higher or lower than that stated above Background values were obtained as average for open waters (>1 nm) of the western black sea, 0-10 m depths for winter period of 2008-2011. These values also change for western and eastern black sea and seasonally. *National legislation(2009): Oligotrophic conditions for the Black Sea . This legislation sets criteria for other trophic levels and also for TP, TN and SDD.					
values	For each of the above p country's monitoring p	lan	-	aiues, as ille	asured by your	
	Parameter	Indicative va	lue			
Chl-a 0.05-3.2 (min-max values for the above period 10% percentile(reference value): 0,45					eriod and area)	
Method	Please state the method used for measuring for each parameter and determining the above values				etermining the	
	Parameter	Method used				

SOUTH EUROPEAN SEAS

For each parameter, please state the predefined scale that is used to assess progress towards GES, if any.

FACTSHEET 3: Eutrophication - Other

Descriptor	D5 Eutrophication					
Indicator	Other					
Parameters	The parameters for nutrients include secchi depth and dissolved oxygen concentration. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).					
	Parameter	Background	Upper	Unit	Monitoring	
		Level	Limit		Frequency	
	SDD	10	>6	m	Twice/year	
	DO					
Comments regarding background and upper limits	Please state whether there are areas where the background level is higher or lower than that stated above Background values were obtained as average for open waters (>1 nm) of the western black sea in winter period of 2008-2011. These values also change for western and eastern black sea and seasonally. *National legislation(2009): Oligotrophic conditions for the Black Sea . This legislation sets criteria for other trophic levels and also for TP, TN and Chl-a.					
Indicative values	For each of the above para country's monitoring plan	1		values, as mo	easured by your	
	Parameter	Indicative valu	e			
	SDD	6.6-16.4 m (mi	n-max values	s for the abov	re period and area)	
	DO					
Method	Please state the method us above values	sed for measuring	for each par	ameter and d	etermining the	
	Parameter	Method used				

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

IN THE

SOUTH EUROPEAN SEAS

	SDD	Secchi disk				
	DO	Winkler method				
Scales to assess GES	For each parameter, please state the predefined scale that is used to assess progress towards GES, if any.					
	10 Percentil of data propo Target as set by expert jud					
	For bottom DO: Instead of bottom DO values, sigma-t 14.3-14.4 and 15.4 values be considered for the western black sea. GES target values for these density lay were proposed respectively as >% 85 for 14.3 and >40-50 uM for 15.4.					

Ref to the Project:

TUBITAK-MRC and MoEU-GDEM (2014). Marine and Coastal Waters Quality Determination and Classification Project (DeKoS). ÇTÜE 5118703, Report No. ÇTÜE.13.155 (Final Report), February 2014, Gebze-Kocaeli, Turkey.

SOUTH EUROPEAN SEAS

FACTSHEET 4: Contaminants – In Water we do not monitor contaminants in water

Descriptor	D8/D9 Contaminants						
Indicator	In water	In water					
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).						
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency		
Comments regarding background and upper limits	Please state whether there are areas where the background level is higher or lower than that stated above						
Indicative values	For each of the above parameters please give indicative values, as measured by your country's monitoring plan Parameter Indicative value						
Method	Please state the method used for measuring for each parameter and determining the above values Parameter Method used						
Scales to assess GES	For each parameter, pleas towards GES, if any.	e state the predefine	ed scale that is	used to assess	progress		

SOUTH EUROPEAN SEAS

FACTSHEET 5: Contaminants – In Sediment DATA ON ORGANIC CONTAMINANTS IS SCARCE.

Descriptor	D8/D9 Contaminants					
Indicator	In sediment					
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides. In the table below, please add all the parameters that are being monitored <u>AND</u> for which there are available monitoring data. Add the most characteristic parameters for our region first. For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).					
	Parameter	Background Level	Upper Limit	Unit	Monitoring Frequency	
	Hg (dry weight)	52		mg/kg	1 /yr (planned)	
	Cd (dry weight)	0,38		mg/kg	"	
	Pb (dry weight)	28		mg/kg	"	
	Zn (dry weight)	119		mg/kg		
	Cu (dry weight)	58		mg/kg		
	Cr (dry weight)	84		mg/kg		
Comments regarding background and upper limits	Please state whether there are areas where the background level is higher or lower than that stated above Average of 2004, 2009 and 2010 measurements. Upper limits not defined for sediment. ERL and enrichment factors are used for assessment.					
Indicative values	For each of the above para country's monitoring plan	l		values, as me	easured by your	
	Parameter	Indicative valu	e			

SOUTH EUROPEAN SEAS

IRIS SES

	Нg	0,04-286 (min-max of measured values)			
	Cd	0,03-1,04 (min-max of measured values)			
	Pb	2,5-79,8 (min-max of measured values)			
	Zn	41-200 (min-max of measured values)			
	Cu	2,9-408 (min-max of measured values)			
	Cr	14-316 (min-max of measured values)			
Method		sed for measuring for each parameter and determining the			
	above values				
	Parameter	Method used			
	Нg	AAS – Cold Vapour			
	Other metals	ICP-OES, EPA Method 3051 a			
Scales to assess GES	For each parameter, pleas towards GES, if any.	e state the predefined scale that is used to assess progress			
	Sediment quality criteria has to be developed for GES and non-GES. Not done yet. So, we used in DeKoS (our national Project) ERL and Enrichment Factor assessments.				
Ref to the Proje					

Ref to the Project:

TUBITAK-MRC and MoEU-GDEM (2014). Marine and Coastal Waters Quality Determination and Classification Project (DeKoS). ÇTÜE 5118703, Report No. ÇTÜE.13.155 (Final Report), February 2014, Gebze-Kocaeli, Turkey.

SOUTH EUROPEAN SEAS

FACTSHEET 5: Contaminants – In Biota

<mark>DATA IS SCARCE.</mark>

Descriptor	D8/D9 Contaminants					
Indicator	In biota					
Parameters	The parameters for contaminants include synthetic substances (e.g. PAHs, PCBs, pesticides etc), non-synthetic substances (e.g. metals such as Cu, Cd, Hg etc), petroleum hydrocarbons and radionuclides.In the table below, please add all the parameters that are being monitored AND for which there are available monitoring data. Add the most characteristic parameters for our region first.For each of these parameters, please give the background level (the yearly average naturally occurring concentration) the upper limit (as set by national or European legislation), as well as the units that these are measured in, and the monitoring frequency (per year).ParameterBackgroundUpper LimitUnitMonitoring					
		Level			Frequency	
Comments regarding background and upper limits	Please state whether there are areas where the background level is higher or lower than that stated above					
Indicative values	For each of the above para country's monitoring plan			ies, as mea	sured by your	
	Parameter	Parameter Indicative value				
Method	d Please state the method used for measuring for each parameter and determining the above values Parameter Method used					
Scales to assess GES	For each parameter, pleas towards GES, if any.	e state the prede	fined scale that is	used to ass	ess progress	

Appendix C – The DeCyDe-4-IRIS Participatory self assessment method towards GES and MSFD integrated monitoring.

C.1. Introduction – concept

In order to serve the needs for GES of MSFD, and have a strategic role in the decision making process, the DeCyDe-4 method has been adapted to IRIS-SES needs and the DeCyDe-4-IRIS method and toolbox has been developed. The aim is threefold:

- To develop a strategic decision support method and framework that supports the decision makers and the stakeholders to understand and justify the main issues that are involved in the process of decision-making and the trade-offs between different decision alternatives.
- To enhance experts and key actors involvement and create an engagement toolbox and
- To develop a self- assessment tool for GES and integrated monitoring efforts, supporting IRIS's aim for *sustainability of achievements*. The tool will remain in operation and be part of the monitoring process, after the end of the project.
- To develop a set of guidelines on implementable abatement measures that can be considered in countries' strategic roadmap/ action plan, in their policies for implementing MFSD, towards GES.

The DeCyDe-4-IRIS method was developed for two descriptors (5 and 8/9), and will be implemented at the regional level during the two IRIS regional stakeholder meetings (one for the Mediterranean and one for the Black Sea) that will be held during the project.

C.2. Implementing DeCyDe-4-IRIS method

The process of the implementation of the DeCyDe-4-IRIS method in IRIS regional workshops consists of the following three successive parts, from A to C. It is important to ensure that the participants in the regional stakeholder meetings are able to provide real site specific input and expertise, and will be committed to incorporate the new methods and suggestions in their work/ processes:

C.2.1 PART A: Preparatory phase

Partners will be asked to be prepared for the workshop, in order to maximize the impact of the workshop outcomes. Two documents will be sent to the partners at least one month before the workshop: the factsheets for descriptors 5 and 8/9 and the stakeholder mapping, as described below. Partners will complete them and will send the completed, site specific documents to ISOTECH prior to the meeting, in order to set up the score board for each partner country, as described in part B of this document.

- The DeCyDe-4-IRIS factsheets for Descriptors 5 and 8/9: at least one month before each of the regional stakeholder workshop, the participating partners will receive certain factsheets that they will have to complete, regarding eutrophication and contaminants. Using these factsheets, partners will need to provide information on eutrophication and contaminant parameters that are being measured in specific region(s) in their country. Partners will be required to choose regions that are neighboring to other partner countries. The information that partners will have to report appears in the attached factsheet and includes:
 - a. what is being monitored (adding the 5 most important parameters at the top),
 - b. How, i.e. the method of monitoring
 - c. what is the baseline concentration in the particular region, what is the upper level set by national or European legislation and what are indicative values recorded in that specific region.

It is important to keep in mind, that the information required here should be brief and representative.

2. *Mapping of key actors and stakeholders*: The list of the DeCyDe-4-IRIS key actor and stakeholder categories that have an important role in MFSD descriptor monitoring and the target of GES, has been prepared and will be sent to the partners that will attend each of the regional stakeholder workshops. The partners should identify people that fall within those specific categories. The stakeholder/ key actors "blend" list will form part of the discussion during Part D of the regional workshops, aiming to identify possible

problems and needs when trying to involve stakeholders. It is thus important that the partners communicate with the people whom they will identify as national stakeholders/ key actors, in order to have a real idea of their reactions, suggestions, and needs. The stakeholders/ key actors will form the national IRIS stakeholder group, which will play an important role for the implementation and sustainability of IRIS outcomes.

IRIS SES

C.2.2 PART B: The DeCyDe-4-IRIS toolbox:

1. The DeCyDe-4-IRIS "score board": Based on the existing situation, that will be derived from the DeCyDe-4-IRIS factsheets in each region, i.e. the parameters that have been identified as important for each descriptor, and the background and upper levels recorded in the factsheets, Isotech will deduct the "ranges" that will be used in the self-assessment tool, aiming at GES. The DeCyDe-4-IRIS score boards will be developed and set up for each country for the specific region which will be identified by the partners on the factsheets, in order to be ready during the IRIS Regional Workshop to work with this tool. Apart from addressing the GES, the scoreboards will include the frequency of monitoring per country/region, per parameter, per descriptor, in order to provide regional participants with more tools to promote cooperation in descriptors monitoring.

2. The Source-pollutant Matrix per descriptor

a. The *Source-pollutant Matrix*, will be developed for each descriptor. The matrix will address the main sources of pollutants for each of the descriptor parameters. It will be used alongside the self-assessment tool to assist decision-makers and stakeholders to pinpoint possible causes for underperformance.

3. The list of Abatement Measures per source/industrial sector

a. Mapping the sources of pollutants and the identification of solutions/measures per source of pollution is a very challenging perspective, which is not part of IRIS tasks. A general list of possible Abatement Measures is developed through DeCyDe-4-IRIS and used here, as a tool. The Abatement Measures list will be used by together with the Source-pollutant Matrix to provide with a framework that supports the decision makers and the stakeholders to understand and justify

the main issues that are involved in the process of decision-making and the tradeoffs between different decision alternatives.

IRISSES

C.2.3 PART C: The DeCyDe-4-IRIS Regional Workshop

Part C of the methodology will be implemented during the IRIS Regional Workshop. Stakeholders and decision makers are expected to participate to IRIS-SES regional workshops.

Each workshop will last about 4 hours. The collective opinions of these partners (key actors and stakeholders) as per the gaps and needs in monitoring and the possible implementation of abatement measures towards GES, will be drafted into a report, to be presented to the Commission as part of IRIS-SES strategic suggestions.

The workshops are structured on group work and will have **three** distinct but interrelated stages, aiming to:

- Guide the partners through the Self Assessment process;
- Identify the gaps, problems and needs of their country/region with regards to eutrophication and contaminants monitoring
- Discuss on possibilities of joint monitoring
- Improve coordination among neighboring countries.
- Discuss possible abatement measures for the improvement of GES

Step 1:

The DeCyDe-4-IRIS self-assessment tool - Scoring through ranges to identify the problems: To start off the workshop, the participants will be asked to form "regional groups", i.e. groups with participants from their neighboring countries/regions. Using the information submitted in the factsheets according to their country and using the DeCyDe-4-IRIS self-assessment tool developed for each region/country and the factsheets, in which indicative concentrations of parameters were recorded, they will score their country/region. The scores of individual countries/regions will be discussed among the regional groups and major differences will be identified and discussed. Where scores are lower than the average, a discussion on the possible

reasons will help identify the problems in specific regions or countries. Each group will present their outcomes to the plenary.

Step 2:

Gaps in cooperation in MSFD descriptors monitor - proposals on how to improve joint monitoring possibilities: having their self assessment tools filled and discussed the participants will be asked again to go back to their groups for the second DeCyDe-4-IRIS workshop:

- a. what are the monitoring/measurement needs in each country and what are the common ones for the region. Each participant will be given 1 post-it on which to write the major need according to their opinion. Then each group will identify the common needs of their group.
- b. Following the same procedure as in point (a) above, the participants will be asked to identify possible collaboration opportunities (i.e. whether the monitoring scheme of one country/region could be expanded to include another country/region and fill in a monitoring gap, joint use of infrastructure etc).

The groups will then be asked to report this back to plenary.

The results from activities (a) and (b) will be collected and grouped according to their category (i.e. whether they regard infrastructure, policy etc) and if possible their region and will be reported.

Step 3:

Abatement Measures: This part of the workshop starts with an open discussion on the sourcepollutant relationships, using the source pollutant matrix as a tool. Then the participants will again go back to their groups and will be asked to identify 1-2 possible measures, from the Abatement Measures List, that can be implemented per source/ per descriptor, in their region. Each group will report to plenary. This part of the workshop will provide with a useful strategic tool: possible implementable abatement measures will be identified by the decision makers/ stakeholders themselves in cooperation with their counterparts from the neighbouring countries. The result of this innovative and participatory part of the workshops will form a guideline for promoting specific actions towards GES.

C.3. Scope and expected outcomes of the DeCyDe-4-IRIS Workshop

The DeCyDe-4-IRIS workshop will enable key actors, decision makers and stakeholders to:

- 1. **Introduce in their activities a self-assessment process:** with the use of the self-assessment tool, partners will be able to "score" their country/region with regards to meeting GES for Descriptors 5 and 8/9, monitor their progress over time and test the effects of any changes in monitoring and management to their overall score. Easily identify which parameters need to be improved in order to increase their overall score.
- 2. Record the challenges and opportunities to improve regional cooperation for the implementation of the Marine Strategy Monitoring Schemes. Provide with the experts opinion on monitoring gaps and needs and ideas on how-to improve joint monitoring actions on MFSD descriptors;
- **3.** Formulate a strategic guideline, with specific and implementable abatement measures that will support MFSD target of GES

INTEGRATED REGIONAL MONITORING IMPLEMENTATION STRATEGY

IN THE

SOUTH EUROPEAN SEAS

IRIS SES

Appendix D – Proposed Abatement Measures to Improve the Environmental Status Related to Eutrophication (D5) and Contaminants (D8/D9)

Source 1: Municipal Waste

A. Sewage

- 1. Absorption pits
- 2. Sewerage system with primary wastewater treatment and discharge in the sea
- 3. Sewerage system with secondary wastewater treatment and discharge in the sea
- 4. Sewerage system with tertiary wastewater treatment and discharge in the sea
- 5. Sewerage system with primary wastewater treatment and use of treated water for agricultural or other purposes
- 6. Sewerage system with secondary wastewater treatment and use of treated water for agricultural or other purposes
- 7. Sewerage system with tertiary wastewater treatment and use of treated water for agricultural or other purposes
- 8. Sewerage system with tertiary wastewater treatment and additional nutrient minimization techniques
- 9. Place emergency outfalls for wastewater treatment plans away from the coast
- 10. Return of treated water to main users
- 11. In coastal hotels:
 - a. Minimize the use of chemical fertilizers on grass and green spaces
 - b. Replace chemical fertilizers with low release organic soil conditioners (e.g. compost)
 - c. Establish private water desalination plants
 - d. Secure the diversion of sewage from the sea by:
 - i. Establishing connections with the sewerage system
 - ii. Implementing private tertiary treatment stations with controlled use of water on-site
 - iii. Storage in watertight tanks and transfer to a central treatment station
- 12. Other (please specify)

SOUTH EUROPEAN SEAS

B. Other Municipal Discharges

- 1. Avoid the direct discharge of rainwater to rivers and the sea
- 2. Create artificial reef ponds/ buffer zones or other areas of vegetation
- 3. Replace materials that release pollutants e.g. PAHs, heavy metals (from e.g. asphalt, petrol) with other less harmful alternatives
- 4. Other (please specify)

Source 2: Industrial Waste

- 1. Separate waste streams to ensure the proper management of each stream
- 2. According to the waste stream, the following methods can be applied:
 - a. Reuse in other operations
 - b. Material recovery
- 3. Pre-treatment of wastewater and transfer to a central municipal wastewater treatment plant
- 4. Central industrial wastewater treatment plant in industrial zones
- 5. Private wastewater treatment plants
- 6. Watertight evaporation ponds, or watertight tanks that will hold the wastewater until it is ready to be transported to a wastewater treatment plant
- 7. Limit emissions through stricter legislation and practical measures e.g. new equipment that minimizes PAH emissions from diesel central heating engines
- 8. Other (please specify)

Source 3: Farming including aquaculture

- 1. Apply automatic control and feeding systems-codes-technologies in farming aquaculture
- 2. Periodically or permanently transfer aquaculture cages to a significant distance from the coast
- 3. Reduction of hatcheries wastewater polluting load through managerial, or/and technological interventions

4. Construct watertight evaporation tanks for the diversion of liquid-solid farming waste from surface runoff

IRIS SES

- 5. Anaerobic digestion at the central and private level
- 6. Other waste treatments (e.g. soil conditioners etc.)
- 7. Rainwater control on farming units
- 8. Use appropriate material and carry out due studies for watertight evaporation tanks
- 9. Other (please specify)

Source 4: Agriculture

- 1. Promote organic agriculture
- 2. Apply a good agricultural practice code, complemented by a certification process
- 3. Training-Awareness Raising campaigns on proper agricultural care for the reduction of chemical/synthetic fertilizers and/or the gradual use of slow release organic soil conditioners (e.g. compost)
- 4. Prohibit the use of chemical fertilizers to end nitrification (protected EU areas)
- 5. Use alternative crops with limited fertilisation requirements
- 6. Promote crop rotation with appropriate crops/species
- 7. Other (please specify)

Source 5: Shipping – Nautical Tourism and Energy (hydrocarbon exploration and mining)

- 1. Avoid copper based antifoulants
- 2. Provide incentives for technical modifications / changes to ship engines to improve combustion and reduce emissions
- 3. Impose stricter ship emission limits
- 4. Prohibit the disposal of wastewater from boats, regardless of boat size
- 5. Implement an indirect fee system
- 6. Other (please specify)

SOUTH EUROPEAN SEAS

Appendix E – List of Participants at the Black Sea DeCyDe-4-IRIS Workshop

Ref.	NAME	AFFILIATION	CONTACT DETAILS				
No.	INAIVIE	AFFILIATION	CONTACT DETAILS				
110.		PANEL					
1	BOLVVENI	ISOTECH Ltd Environmental	veria Giastach som ev				
I	POLYXENI		xenia@isotech.com.cy				
	LOIZIDOU	Research and Consultancy	project@isotech.com.cy				
		P.O. Box 14161, 2154 Nicosia,					
		Cyprus					
2	MICHAEL LOIZIDES	ISOTECH Ltd Environmental	project@isotech.com.cy				
		Research and Consultancy					
		P.O. Box 14161, 2154 Nicosia,					
2	ANTONIC DETDOLI	Cyprus ISOTECH Ltd Environmental					
3	ANTONIS PETROU		project@isotech.com.cy				
		Research and Consultancy					
		P.O. Box 14161, 2154 Nicosia,					
	Cyprus						
		BLACK SEA COMMISSION					
4	IRINA MAKARENKO	Pollution Monitoring and	<u>irina.makarenko@blacks</u>				
		Assessment (PMA) Officer	<u>ea-commission.org</u>				
		Permanent Secretariat					
		Commission on the Protection					
		of the Black Sea Against					
		Pollution (Bucharest					
	<u> </u>	Convention)					
		ROMANIA					
5	MIHAIL COSTACHE	Ministry of Environment and	<u>Mihai.costache@mmediu</u>				
		Climate Change, Department	<u>.ro</u>				
		for Water, Forests and Fishery,					
		Romania					
6	MONICA GURAU	Head of Laboratory and	daniela.serban@apmct.a				
		Monitoring Constanta	<u>npm.ro</u>				
		Environmental Protection					
		Agency					
7	PAUL IONCESCU	Constanta Harbor	<u>pioncescu@constantza-</u>				
		Administration	port.ro				
8	ANGELICA	Natural Sciences Museum	<u>curlisca.angelica@gmail.</u>				
	CURLISCA	Complex, Constanta	<u>com</u>				
9	LILIANA TEODOROF	DDNI Tulcea	office@ddni.ro				
10	MIHAELA TUDOR	DDNI Tulcea	office@ddni.ro				

SOUTH EUROPEAN SEAS

11	CAROLINA	Politechnic University of	carolinaconstantin@gma
	CONSTANTIN	Bucharest	<u>il.com</u>
12	GEORGETA BANDOC	University of Bucharest	geobandoc@yahoo.com
13	LUCICA TOFAN	Vice-Rector, Ovidius	lucicatofan@gmail.com
		University Constanta, Romania	
14	MARIUS SKOLKA	Dean, Faculty of Natural	<u>mskolka@gmail.com</u>
		Sciences, Ovidius University	
		Constanta, Romania	
15	FLORIN NICOLAE	Dean, "Micea cel Batran"	<u>nicolae_florin_m@yahoo</u>
		Naval Academy, Constanta	<u>.com</u>
16	SIMION NICOLAEV	NIMRD, Director	<u>snicolaev@alpha.rmri.ro</u>
17	TANIA ZAHARIA	NIMRD, Scientific Director	<u>tzaharia@alpha.rmri.ro</u>
18	VALODIA MAXIMOV	NIMRD, Head of Department	vmaximov@alpha.rmri.r
		of Marine Living Resources	0
19	GEORGE TIGANOV	NIMRD, Department of	
19	GEORGE HIGANOV	Marine Living Resources	
20	LUMINITA BUGA	NIMRD, Head of	lbuga@web.de
20	LOWINITA BUGA	Oceanography Department	<u>Ibuga(u) web.ue</u>
21	ALINA DAIANA	NIMRD, Oceanography	alina daiana ct@yahoo.
21	SPINU	Department	com
22	LUMINITA LAZAR	NIMRD, Head of Laboratory	llazar@alpha.rmri.ro
		Analyses and Measurements	
23	VALENTINA COATU	NIMRD, Laboratory Analyses	vcoatu@alpha.rmri.ro
_		and Measurements	
24	ANDRA OROS	NIMRD, Laboratory Analyses	aoros@alpha.rmri.ro
		and Measurements	
25	DANIELA TIGANUS	NIMRD, Laboratory Analyses	dtiganus@alpha.rmri.ro
		and Measurements	
26	FLORIN TIMOFTE	NIMRD, Head of Ecology and	ftimofte@alpha.rmri.ro
		Environment Protection	
		Department	
27	LAURA BOICENCO	NIMRD, Ecology and	lboicenco@alpha.rmri.ro
		Environment Protection	
		Department	
28	VALERIA ABAZA	NIMRD, Ecology and	<u>vali_abaza@yahoo.com</u>
		Environment Protection	
		Department	
29	MARIANA	NIMRD, Head of	golumbeanum@gmail.co
	GOLUMBEANU	Technological Transfer &	<u>m</u>

SOUTH EUROPEAN SEAS

		Dissemination Department	
30	MAGDA NENCIU	NIMRD, Technological	<u>magdalena.nenciu@gmai</u>
		Transfer & Dissemination	<u>l.com</u>
		Department	
31	MARIUS NEDELCU	NIMRD, Head of IT&GIS	mnedelcu@alpha.rmri.ro
		Department	
32	PATRASCU VLAD		
33	DACIANA SARA	Universitatea Ovidius	<u>daciana.sara@gmail.com</u>
		Constanta	
34	OTILIA AMTOMARU	ABADL Constanta Monitoring	
35	ELENA STOICA	INCDM CTA	<u>estoica@alpha.rmri.ro</u>
		BULGARIA	
36	TANYA MILKOVA	Head of Protection of Marine	bdvarna@bsbd.org
		Waters and Monitoring	
		Department	
		Black Sea Basin Directorate,	
		Varna	
37	DEYAN MINCHEV	Black Sea Basin Directorate,	
		Varna	
		GREECE	
38	KALLIOPI A. PAGOU	Hellenic Centre for Marine	popi@hcmr.gr
		Research, Anavissos, 19013	
		Greece	
39	EVANGELOS	Hellenic Centre for Marine	vpapath@hcmr.gr
	PAPATHANASSIOU	Research, Anavissos, 19013	
		Greece	
40	NIKOS STREFTARIS	Hellenic Centre for Marine	nstrefta@ath.hcmr.gr
-		Research, Anavissos, 19013	
		Greece	
41	FOKION K.	Alexander Technological	bena@gen.teithe.gr
	VOSNIAKOS	Educational Institute of	Sona W/Senterine.gr
		Thessaloniki (A.T.E.ITh),	
		Thessaloníki, Greece & Balkan	
		Environmental Association	
		(B.EN.A.)	

